Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 248: 108111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479147

RESUMO

BACKGROUND AND OBJECTIVE: Training deep learning models for medical image segmentation require large annotated datasets, which can be expensive and time-consuming to create. Active learning is a promising approach to reduce this burden by strategically selecting the most informative samples for segmentation. This study investigates the use of active learning for efficient left ventricle segmentation in echocardiography with sparse expert annotations. METHODS: We adapt and evaluate various sampling techniques, demonstrating their effectiveness in judiciously selecting samples for segmentation. Additionally, we introduce a novel strategy, Optimised Representativeness Sampling, which combines feature-based outliers with the most representative samples to enhance annotation efficiency. RESULTS: Our findings demonstrate a substantial reduction in annotation costs, achieving a remarkable 99% upper bound performance while utilising only 20% of the labelled data. This equates to a reduction of 1680 images needing annotation within our dataset. When applied to a publicly available dataset, our approach yielded a remarkable 70% reduction in required annotation efforts, representing a significant advancement compared to baseline active learning strategies, which achieved only a 50% reduction. Our experiments highlight the nuanced performance of diverse sampling strategies across datasets within the same domain. CONCLUSIONS: The study provides a cost-effective approach to tackle the challenges of limited expert annotations in echocardiography. By introducing a distinct dataset, made publicly available for research purposes, our work contributes to the field's understanding of efficient annotation strategies in medical image segmentation.


Assuntos
Ecocardiografia , Ventrículos do Coração , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
2.
Comput Biol Med ; 171: 108192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417384

RESUMO

Doppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce variability, prompting the need for automated solutions. This study introduces an innovative deep learning model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent from Electrocardiogram information. A dataset of Doppler images annotated by multiple expert cardiologists was established, serving as a robust benchmark. The model leverages heatmap regression networks, achieving 96% detection accuracy. The model discrepancy with the expert consensus falls comfortably within the range of inter- and intra-observer variability in measuring Doppler peak velocities. The dataset and models are open-source, fostering further research and clinical application.


Assuntos
Aprendizado Profundo , Velocidade do Fluxo Sanguíneo , Ecocardiografia Doppler/métodos , Valva Mitral/diagnóstico por imagem , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...