Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948788

RESUMO

Rationale: We take a unique approach to understanding the causes of podocyte injury in collagen IV nephropathies, a crucial step in developing targeted therapies for conditions like Alport Syndrome. Objectives: We characterize the structural, functional, and biophysical properties of glomerular capillaries and podocytes in Col4α3 -/- mice and analyze kidney cortex transcriptional profiles at various disease stages. We investigate the effects of the ER stress mitigator TUDCA on these parameters. Furthermore, we used human FSGS associated podocyte enriched genes to identify molecular pathways rescued by TUDCA thereby offering potential therapeutic targets for Alport Syndrome. Findings: We find a clear disease progression timeline in Col4α3 -/- mice. Podocyte injury develops by 3 months, with glomeruli reaching maximum deformability at 4 months, associated with a 40% loss of podocytes. This is followed by progressive stiffening of glomerular capillaries, increasing proteinuria, reduced renal function, inflammatory infiltrates, and fibrosis from months 4 to 8. Bulk RNA sequencing at 2, 4, and 7 months reveals a progressive increase in expression of genes related to cytokine and chemokine signaling, matrix and cell injury, and activation of the TNF pathway, similar to observations in a NEPTUNE FSGS cohort. Podocyte-enriched genes from FSGS patients mapped to mice found that TUDCA, which mitigated glomerular and renal injury suppressed molecular pathways associated with extracellular matrix and basement membrane synthesis, podocyte stress and hypertrophy. Conclusions: We uncover two distinct phases of Col4α3 -/- nephropathy progression. The first is characterized by podocytopathy, increased glomerular capillary deformability and accelerated podocyte loss, and the second by increased capillary wall stiffening and renal inflammatory and profibrotic pathway activation. The response of podocytes to TUDCA treatment provides novel insights into downstream signaling pathways, offering potential therapeutic targets for treating Alport and related nephropathies.

2.
Kidney Med ; 6(6): 100828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799783

RESUMO

Rationale & Objective: The effect of apolipoprotein L1(APOL1) genotype on future risk of kidney disease among middle-aged individuals with good kidney function is not well established. Study Design: Longitudinal cohort study. Setting & Participants: In total, 5,886 healthy individuals (45-64 years old) enrolled in the Atherosclerosis Risk in Communities study with creatinine-based estimated glomerular filtration rate ≥ 80 mL/min who would be suitable kidney donors. Exposures: Race and APOL1 genotype. Outcomes: Creatinine- and cystatin C-based estimated glomerular filtration rate (eGFRcr-cys) using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2021 equation, urinary albumin-creatinine ratio (UACR), proportion with chronic kidney disease (CKD) 3a or worse, end-stage kidney disease (ESKD), and death. Analytical Approach: Participants grouped based on race and APOL1 genotype. Compared eGFRcr-cys and UACR across groups. Multinomial logistic regression models were used compare odds of CKD. Kaplan-Meier survival curves were created to compare rates of ESKD and death at last follow-up. Results: There were 5,075 Whites (86%), 701 Blacks carrying the low-risk APOL1 genotype (12%), and 110 Blacks carrying the high-risk APOL1 genotype (2%). The mean age at baseline was 53 ± 6 years. At 10 years, White participants had lower eGFRcr-cys than low-risk and high-risk groups (89 ± 16 vs 91 ± 16 and 92 ± 15 mL/min/1.73 m2, respectively; P < 0.001). At 25 years, White participants continued to have lower eGFRcr-cys than the low-risk group (70 ± 18 vs 72 ± 19 mL/min/1.73 m2; P < 0.001) but not compared with the high-risk APOL1 genotype (67±23 mL/min/1.73 m2). There was no difference in UACR among groups at 10 and 25 years (P = 0.87 and 0.91, respectively). The odds of developing CKD stage 3a or worse were not different between low-risk and high-risk APOL1 group in both unadjusted and adjusted models (P = 0.26 and P = 0.39, respectively). At last follow-up, <5% developed ESKD, and 45% of individuals either died or reached ESKD with no difference in outcomes between the groups. Limitations: Low ascertainment because of death and long follow-up. Conclusions: Among middle-aged individuals, APOL1 genotype does not appear to be a major driver of future risk of kidney disease.


Black patients with kidney disease carrying 2 variants of the apolipoprotein L1 (APOL1) gene, referred to as the high-risk genotype, experience an accelerated decline in kidney function than those with 0 or 1 risk variant. It is unknown whether the high-risk genotype negatively affects kidney function of healthy middle-aged individuals. We evaluated the effect of APOL1 genotype on kidney function of the Atherosclerosis Risk in Communities study participants (mean age 53 years) who had normal kidney function and blood pressure at baseline. At 25 years of follow-up, the APOL1 high-risk genotype did not appear to be a major driver of future risk of kidney disease. Our study findings are relevant for counseling older living donor candidates as well as family members of patients with APOL1-associated kidney disease.

3.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37398386

RESUMO

Arteriolar hyalinosis in kidneys is an independent predictor of cardiovascular disease, the main cause of mortality in chronic kidney disease (CKD). The underlying molecular mechanisms of protein accumulation in the subendothelial space are not well understood. Using single cell transcriptomic data and whole slide images from kidney biopsies of patients with CKD and acute kidney injury in the Kidney Precision Medicine Project, the molecular signals associated with arteriolar hyalinosis were evaluated. Co-expression network analysis of the endothelial genes yielded three gene set modules as significantly associated with arteriolar hyalinosis. Pathway analysis of these modules showed enrichment of transforming growth factor beta / bone morphogenetic protein (TGFß / BMP) and vascular endothelial growth factor (VEGF) signaling pathways in the endothelial cell signatures. Ligand-receptor analysis identified multiple integrins and cell adhesion receptors as over-expressed in arteriolar hyalinosis, suggesting a potential role of integrin-mediated TGFß signaling. Further analysis of arteriolar hyalinosis associated endothelial module genes identified focal segmental glomerular sclerosis as an enriched term. On validation in gene expression profiles from the Nephrotic Syndrome Study Network cohort, one of the three modules was significantly associated with the composite endpoint (> 40% reduction in estimated glomerular filtration rate (eGFR) or kidney failure) independent of age, sex, race, and baseline eGFR, suggesting poor prognosis with elevated expression of genes in this module. Thus, integration of structural and single cell molecular features yielded biologically relevant gene sets, signaling pathways and ligand-receptor interactions, underlying arteriolar hyalinosis and putative targets for therapeutic intervention.

4.
Nature ; 619(7970): 585-594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468583

RESUMO

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Assuntos
Perfilação da Expressão Gênica , Nefropatias , Rim , Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/genética , Rim/citologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Imageamento Tridimensional
6.
J Virol ; 97(5): e0034323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166336

RESUMO

BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.


Assuntos
Vírus BK , Células Epiteliais , Nefropatias , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Células Cultivadas , Rim/citologia , Nefropatias/virologia , Infecções por Polyomavirus/complicações , Infecções Tumorais por Vírus/complicações
7.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637914

RESUMO

The molecular mechanisms of sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) remain incompletely understood. Single-cell RNA sequencing and morphometric data were collected from research kidney biopsies donated by young persons with type 2 diabetes (T2D), aged 12 to 21 years, and healthy controls (HCs). Participants with T2D were obese and had higher estimated glomerular filtration rates and mesangial and glomerular volumes than HCs. Ten T2D participants had been prescribed SGLT2i (T2Di[+]) and 6 not (T2Di[-]). Transcriptional profiles showed SGLT2 expression exclusively in the proximal tubular (PT) cluster with highest expression in T2Di(-) patients. However, transcriptional alterations with SGLT2i treatment were seen across nephron segments, particularly in the distal nephron. SGLT2i treatment was associated with suppression of transcripts in the glycolysis, gluconeogenesis, and tricarboxylic acid cycle pathways in PT, but had the opposite effect in thick ascending limb. Transcripts in the energy-sensitive mTORC1-signaling pathway returned toward HC levels in all tubular segments in T2Di(+), consistent with a diabetes mouse model treated with SGLT2i. Decreased levels of phosphorylated S6 protein in proximal and distal tubules in T2Di(+) patients confirmed changes in mTORC1 pathway activity. We propose that SGLT2i treatment benefits the kidneys by mitigating diabetes-induced metabolic perturbations via suppression of mTORC1 signaling in kidney tubules.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Rim/metabolismo , Glomérulos Renais/metabolismo , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Humanos , Criança , Adolescente , Adulto Jovem , Alvo Mecanístico do Complexo 1 de Rapamicina
9.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675394

RESUMO

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Assuntos
Nefropatias , Rim , Humanos , Rim/patologia , Nefropatias/metabolismo , Metabolômica/métodos , Proteômica/métodos , Transcriptoma
10.
Exp Clin Transplant ; 20(3): 306-310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34085917

RESUMO

Rabbit antithymocyte globulin is a lymphocytedepleting agent commonly used as induction therapy in kidney transplants. Although its use is generally safe and well tolerated, serious side effects can occur. Here, we describe a case of a severe immune complex hypersensitivity reaction with disseminated intravascular coagulation in response to rabbit antithymocyte globulin infusion. Immediate treatment required return to the operating room, massive transfusion of blood products, and plasmapheresis. The patient's posttransplant course was significant for volume overload, prolonged respiratory failure, and delayed graft function that required hemodialysis, but within 10 weeks the patient had made a full recovery and kidney allograft function had returned to normal.


Assuntos
Coagulação Intravascular Disseminada , Transplante de Rim , Soro Antilinfocitário , Coagulação Intravascular Disseminada/diagnóstico , Coagulação Intravascular Disseminada/tratamento farmacológico , Coagulação Intravascular Disseminada/etiologia , Rejeição de Enxerto , Humanos , Imunossupressores , Transplante de Rim/efeitos adversos , Resultado do Tratamento
11.
Kidney Int ; 101(4): 779-792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952098

RESUMO

Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.


Assuntos
Nefropatias , Transplante de Rim , Podócitos , Células Endoteliais , Feminino , Membrana Basal Glomerular/patologia , Humanos , Hipertrofia , Integrina alfa3/metabolismo , Nefropatias/patologia , Transplante de Rim/efeitos adversos , Masculino , Podócitos/patologia
12.
Sci Rep ; 11(1): 19605, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599260

RESUMO

Increasing evidence suggests that single in kidney states (e.g., kidney transplantation and living donation) progressive glomerulosclerosis limits kidney lifespan. Modeling shows that post-nephrectomy compensatory glomerular volume (GV) increase drives podocyte depletion and hypertrophic stress resulting in proteinuria and glomerulosclerosis, implying that GV increase could serve as a therapeutic target to prevent progression. In this report we examine how Angiotensin Converting Enzyme inhibition (ACEi), started before uninephrectomy can reduce compensatory GV increase in wild-type Fischer344 rats. An unbiased computer-assisted method was used for morphometric analysis. Urine Insulin-like growth factor-1 (IGF-1), the major diver of body and kidney growth, was used as a readout. In long-term (40-week) studies of uni-nephrectomized versus sham-nephrectomized rats a 2.2-fold increase in GV was associated with reduced podocyte density, increased proteinuria and glomerulosclerosis. Compensatory GV increase was largely prevented by ACEi started a week before but not after uni-nephrectomy with no measurable impact on long-term eGFR. Similarly, in short-term (14-day) studies, ACEi started a week before uni-nephrectomy reduced both GV increase and urine IGF-1 excretion. Thus, timing of ACEi in relation to uni-nephrectomy had significant impact on post-nephrectomy "compensatory" glomerular growth and outcomes that could potentially be used to improve kidney transplantation and live kidney donation outcomes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Glomerulosclerose Segmentar e Focal/prevenção & controle , Hipertrofia/prevenção & controle , Nefrectomia/efeitos adversos , Rim Único/patologia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Animais , Hipertrofia/tratamento farmacológico , Fator de Crescimento Insulin-Like I/urina , Glomérulos Renais/patologia , Masculino , Podócitos , Proteinúria , Ratos Endogâmicos F344
13.
Clin Transplant ; 35(11): e14457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387906

RESUMO

Long-term kidney transplant (KT) survival has remained relatively stagnant. Protocol biopsy studies suggest that glomerulosclerosis is a significant contributor to long-term graft failure. We previously demonstrated that podocyte loss in the first year post-transplantation predicted long-term allograft survival. However, whether increased podocyte loss continues over the lifespan of a KT remains unclear. We performed a cross-sectional analysis of 1182 urine samples from 260 KT recipients up to 19-years after transplantation. Urine pellet (UP) mRNAs were assayed for podocyte (NPHS2/podocin and nephrin/NPHS1), distal tubule (aquaporin2), and profibrotic cytokine (TGFbeta1). Multivariable generalized estimating equations were used to obtain "population-averaged" effects for these markers over time post-KT. Consistent with early stresses both podocyte and tubular markers increased immediately post-KT. However, only podocyte markers continued to increase long-term. A role for hypertrophic stresses in driving podocyte loss over time is implied by their association with donor BMI, recipient BMI, and donor-recipient BMI mismatch at transplantation. Furthermore, UP podocin mRNA was associated with urine TGFbeta1, proteinuria, and reduced estimated glomerular filtration rate, thereby linking podocyte injury to allograft fibrosis and survival. In conclusion we observed that podocyte loss continues long-term post-KT suggesting an important role in driving late graft loss.


Assuntos
Podócitos , Aloenxertos , Estudos Transversais , Humanos , Longevidade , Proteinúria
14.
Transpl Infect Dis ; 23(2): e13472, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32959930

RESUMO

BACKGROUND: Reducing immunosuppression can effectively treat BK viremia (BKV) and BK nephropathy, but has been associated with increased risks for acute rejection and development of donor-specific antibodies (DSA). To date there have been no systematic evaluations of re-escalating immunosuppression in transplant patients with resolving BKV. Importantly, the safety of this approach and impact on graft survival is unclear. METHODS: We performed a single-center retrospective review of kidney transplant recipients between July 2011 and June 2013 who had immunosuppression reduction after developing BKV (plasma PCR ≥ 1000 copies/ml). Changes in immunosuppression and patient outcomes were tracked until occurrence of a complication event: biopsy-proven acute rejection (BPAR), detection of de novo DSA, or recurrent BKV. Patients were grouped according to whether or not net immunosuppression was eventually increased. RESULTS: Out of 88 patients with BKV, 44 (50%) had net immunosuppression increased while the other 44 did not. Duration of viremia, peak viremia, induction, and sensitization status were similar between the two groups. In a Kaplan-Meier analysis, increasing immunosuppression was associated with less BPAR (P = .001) and a trend toward less de novo DSA development (P = .06). Death-censored graft survival (P = .27) was not different between the two groups. In the net immunosuppression increase group, recurrent BKV occurred in 22.7% without any BKV-related graft losses. CONCLUSION: These findings support potential benefits of increasing immunosuppression in patients with low-level or resolved BKV, but prospective trials are needed to better understand such an approach.


Assuntos
Vírus BK , Infecções por Polyomavirus , Humanos , Terapia de Imunossupressão , Imunossupressores , Transplante de Rim , Estudos Prospectivos , Estudos Retrospectivos , Infecções Tumorais por Vírus
15.
Sci Rep ; 10(1): 18209, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097787

RESUMO

Earlier detection of progression risk in diabetic nephropathy will allow earlier intervention to reduce progression. The hypothesis that urinary pellet podocyte mRNA is a more sensitive progression risk marker than microalbuminuria was tested. A cross sectional cohort of 165 type 2 diabetics and 41 age and sex-matched controls were enrolled. Podocyte stress (Urinary pellet podocin:nephrin mRNA ratio), podocyte detachment (Urinary pellet podocin mRNA:creatinine ratio: UPPod:CR) and a tubular marker (Urinary pellet aquaporin 2:creatinine ratio) were measured in macro-albuminuric, micro-albuminuric and norm-albuminuric groups. eGFR was reassessed after 4 years in 124 available diabetic subjects. Urinary pellet podocyte and tubular mRNA markers were increased in all diabetic groups in cross-sectional analysis. After 4 years of follow-up univariable and multivariate model analysis showed that the only urinary markers significantly related to eGFR slope were UPPod:CR (P < 0.01) and albuminuria (P < 0.01). AUC analysis using K-fold cross validation to predict eGFR loss of ≥ 3 ml/min/1.73m2/year showed that UPPod:CR and albuminuria each improved the AUC similarly such that combined with clinical variables they gave an AUC = 0.70. Podocyte markers and albuminuria had overlapping AUC contributions, as expected if podocyte depletion causes albuminuria. In the norm-albuminuria cohort (n = 75) baseline UPPod:CR was associated with development of albuminuria (P = 0.007) and, in the tertile with both normal kidney function (eGFR 84 ± 11.7 ml/min/1.73m2) and norm-albuminuria at baseline, UPPod:CR was associated with eGFR loss rate (P = 0.003). In type 2 diabetics with micro- or macro-albuminuria UPPod:CR and albuminuria were equally good at predicting eGFR loss. For norm-albuminuric type 2 diabetics UPPod:CR predicted both albuminuria and eGFR loss.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/complicações , Podócitos/metabolismo , RNA Mensageiro/metabolismo , Albuminúria/urina , Biomarcadores/urina , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/urina , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Fatores de Risco
16.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038424

RESUMO

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , SARS-CoV-2/metabolismo , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
17.
Kidney Int ; 98(3): 699-707, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32739208

RESUMO

Hypertension-associated progressive glomerulosclerosis is a significant driver of both de novo and all-cause chronic kidney disease leading to end-stage kidney failure. The progression of glomerular disease proceeds via continuing depletion of podocytes from the glomeruli into the ultrafiltrate. To non-invasively assess injury patterns associated with mean arterial pressure (MAP), we conducted an observational study of 87 healthy normotensive individuals who were cleared for living kidney donation. Urine pellet podocin and aquaporin2 mRNAs normalized to the urine creatinine concentration (UPod:Creat ratio and UAqp2:Creat ratio) were used as markers of podocyte detachment and tubular injury, respectively. The ratio of two podocyte mRNA markers, podocin to nephrin (UPod:Neph) as well as the ratio of podocin to the tubular marker aquaporin2 (UPod:Aqp2) estimated the relative rates of podocyte stress and glomerular vs. tubular injury. The MAP was positively correlated with the UPod:Neph and UPod:Aqp2, thereby confirming the relationship of MAP with podocyte stress and the preferential targeting of the glomerulus by higher MAP. In multivariable linear regression analysis, both UPod:Neph and UPod:Creat, but not UAqp2:Creat or proteinuria, were both significantly related to a range of normal MAP (70 to 110 mm Hg). Systolic, as opposed to diastolic or pulse pressure was associated with UPod:Creat. Thus, higher podocyte stress and detachment into the urine are associated with MAP even in a relatively "normal" range of MAP. Hence, urine pellet mRNA monitoring can potentially identify progression risk before the onset of overt hypertension, proteinuria or chronic kidney disease.


Assuntos
Podócitos , Aquaporina 2/genética , Pressão Arterial , Humanos , Glomérulos Renais , Proteinúria
18.
Clin Transplant ; 34(9): e14005, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32510628

RESUMO

The outcomes of benzodiazepine and opioid co-prescription are not well-defined in transplant populations. We examined linked national transplant registry and pharmaceutical records to characterize benzodiazepine and opioid use in the years before and after transplant in large US cohort of kidney transplant recipients (2007-2016; N = 98 620), and associations (adjusted hazard ratio, LCL aHRUCL ) with death and graft failure. Among the cohort, 15.6% filled benzodiazepine prescriptions in the year before transplant, and 14.0% filled benzodiazepine prescriptions in the year after transplant (short-acting, 9.5%; long-acting, 3.3%; both 1.1%). Use of short-acting benzodiazepines in the year before transplant was associated with a 22% increased risk of death in the year after transplant (aHR, 1.08 1.221.38 ), while use of all classes in the year after transplant was associated with increased risk of death from >1 to 5 years (aHR: short-acting 1.29 1.391.48 ; long-acting 1.12 1.251.40 ; both 1.46 1.742.07 ). Recipients who used benzodiazepines were also more likely to fill opioid prescriptions. Recipients who filled both classes of benzodiazepine and the highest level of opioids had a 2.9-fold increased risk of death compared to recipients who did not use either. Co-prescription of benzodiazepines and opioids in kidney transplant recipients is associated with increased mortality. Ongoing research is needed to understand mechanisms of risk relationships.


Assuntos
Analgésicos Opioides , Transplante de Rim , Analgésicos Opioides/uso terapêutico , Benzodiazepinas/uso terapêutico , Humanos , Estudos Retrospectivos , Fatores de Risco , Transplantados
19.
medRxiv ; 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32511461

RESUMO

COVID-19 morbidity and mortality is increased in patients with diabetes and kidney disease via unknown mechanisms. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Since ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease (DKD) and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of healthy living donor (LD) and DKD kidney biopsies revealed ACE2 expression primarily in proximal tubular epithelial cells (PTEC). This cell specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin angiotensin aldosterone system inhibitors in DKD. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing PTEC in DKD (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The DKD ACE2-positive PTEC module overlapped with expression patterns seen in SARS-CoV-2 infected cells. Similar cellular programs were seen in ACE2-positive PTEC obtained from urine samples of 13 COVID-19 patients who were hospitalized, suggesting a consistent ACE2-coregulated PTEC expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19 related kidney damage.

20.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32107344

RESUMO

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.


Assuntos
Células Endoteliais/patologia , Perfilação da Expressão Gênica/métodos , Glomerulosclerose Segmentar e Focal/patologia , Biomarcadores/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...