Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800723

RESUMO

The therapeutic index of chemotherapeutic agents can be improved by the use of nano-carrier-mediated chemotherapeutic delivery. Ligand-targeted drug delivery can be used to achieve selective and specific delivery of chemotherapeutic agents to cancer cells. In this study, we prepared a peptidomimetic conjugate (SA-5)-tagged doxorubicin (Dox) incorporated liposome (LP) formulation (SA-5-Dox-LP) to evaluate the targeted delivery potential of SA-5 in human epidermal growth factor receptor-2 (HER2) overexpressed non-small-cell lung cancer (NSCLC) and breast cancer cell lines. The liposome was prepared using thin lipid film hydration and was characterized for particle size, encapsulation efficiency, cell viability, and targeted cellular uptake. In vivo evaluation of the liposomal formulation was performed in a mice model of NSCLC. The cell viability studies revealed that targeted SA-5-Dox-LP showed better antiproliferative activity than non-targeted Dox liposomes (Dox-LP). HER2-targeted liposome delivery showed selective cellular uptake compared to non-targeted liposomes on cancer cells. In vitro drug release studies indicated that Dox was released slowly from the formulations over 24 h, and there was no difference in Dox release between Dox-LP formulation and SA-5-Dox-LP formulation. In vivo studies in an NSCLC model of mice indicated that SA-5-Dox-LP could reduce the lung tumors significantly compared to vehicle control and Dox. In conclusion, this study demonstrated that the SA-5-Dox-LP liposome has the potential to increase therapeutic efficiency and targeted delivery of Dox in HER2 overexpressing cancer.

2.
Bioorg Med Chem Lett ; 28(22): 3506-3513, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314880

RESUMO

The human epidermal growth factor receptor (EGFR) family is known to be involved in cell signaling pathways. The extracellular domain of EGFR consists of four domains, of which domain II and domain IV are known to be involved in the dimerization process. Overexpression of these receptors is known to play a significant role in heterodimerization of these receptors leading to the development of cancer. We have designed peptidomimetic molecules to inhibit the EGFR heterodimerization interaction that have shown antiproliferative activity and specificity for HER2-positive cancer cell lines. Among these, a peptidomimetic, compound 5, exhibited antiproliferative activity at low nanomolar concentrations in HER2-overexpressing cancer cell lines. To improve the stability of this peptidomimetic, we have designed and synthesized a novel conjugate of peptidomimetic compound 5 with a lipid, stearic acid. The antiproliferative activity of this conjugate was evaluated in HER2-positive cancer cell lines. Results suggested that the conjugate exhibited selective antiproliferative activity in HER2-overexpressing breast and lung cancer cell lines and was able to block HER2:HER3 heterodimerization. Also, the conjugate showed improved stability with a half-life of 5 h in human serum compared to the half-life of 2 h for parent compound 5. The binding affinity of the conjugate to HER2 protein was evaluated by SPR analysis, and the mode of binding of the lipid conjugate to domain IV of HER2 protein was demonstrated by docking analysis. Thus, this novel lipid conjugate can be used to target HER2-overexpressing cancers.


Assuntos
Desenho de Fármacos , Peptidomiméticos/química , Ácidos Esteáricos/química , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Meia-Vida , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia , Ligação Proteica , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Ressonância de Plasmônio de Superfície
3.
J Pept Sci ; 24(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29436155

RESUMO

HER2 receptors are surface proteins belonging to the epidermal growth factor family of receptors. Their numbers are elevated in breast, lung, and ovarian cancers. HER2-positive cancers are aggressive, have higher mortality rate, and have a poor prognosis. We have designed peptidomimetics that bind to HER2 and block the HER2-mediated dimerization of epidermal growth factor family of receptors. Among these, a symmetrical cyclic peptidomimetic (compound 18) exhibited antiproliferative activity in HER2-overexpressing lung cancer cell lines with IC50 values in the nanomolar concentration range. To improve the stability of the peptidomimetic, d-amino acids were introduced into the peptidomimetic, and several analogs of compound 18 were designed. Among the analogs of compound 18, compound 32, a cyclic, d-amino acid-containing peptidomimetic, was found to have an IC50 value in the nanomolar range in HER2-overexpressing cancer cell lines. The antiproliferative activity of compound 32 was also measured by using a 3D cell culture model that mimics the in vivo conditions. The binding of compound 32 to the HER2 protein was studied by surface plasmon resonance. In vitro stability studies indicated that compound 32 was stable in serum for 48 hours and intact peptide was detectable in vivo for 12 hours. Results from our studies indicated that 1 of the d-amino acid analogs of 18, compound 32, binds to the HER2 extracellular domain, inhibiting the phosphorylation of kinase of HER2.


Assuntos
Aminoácidos Cíclicos/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Peptidomiméticos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Sequência de Aminoácidos , Aminoácidos Cíclicos/síntese química , Antineoplásicos/síntese química , Sítios de Ligação , Ligação Competitiva , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Concentração Inibidora 50 , Células MCF-7 , Peptidomiméticos/síntese química , Ligação Proteica , Estabilidade Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...