Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1302163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515752

RESUMO

Mechanistic understanding of antibiotic persistence is a prerequisite in controlling the emergence of MDR cases in Tuberculosis (TB). We have reported that the cholesterol-induced activation of VapC12 ribonuclease is critical for disease persistence in TB. In this study, we observed that relative to the wild type, mice infected with ΔvapC12 induced a pro-inflammatory response, had a higher pathogen load, and responded better to the anti-TB treatment. In a high-dose infection model, all the mice infected with ΔvapC12 succumbed early to the disease. Finally, we reported that the above phenotype of ΔvapC12 was dependent on the presence of the TLR4 receptor. Overall, the data suggests that failure of a timely resolution of the early inflammation by the ΔvapC12 infected mice led to hyperinflammation, altered T-cell response and high bacterial load. In conclusion, our findings suggest the role of the VapC12 toxin in modulating the innate immune response of the host in ways that favor the long-term survival of the pathogen inside the host.


Assuntos
Mycobacterium tuberculosis , Ribonucleases , Tuberculose , Animais , Camundongos , Imunidade Inata , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Toxinas Biológicas , Tuberculose/imunologia , Tuberculose/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
2.
Tuberculosis (Edinb) ; 145: 102477, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211498

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved sophisticated surveillance mechanisms to neutralize the ROS-induces toxicity which otherwise would degrade a variety of biological molecules including proteins, nucleic acids and lipids. In the present study, we find that Mtb lacking the Rv0495c gene (ΔRv0495c) is presented with a highly oxidized cytosolic environment. The superoxide-induced lipid peroxidation resulted in altered colony morphology and loss of membrane integrity in ΔRv0495c. As a consequence, ΔRv0495c demonstrated enhanced susceptibility when exposed to various host-induced stress conditions. Further, as expected, we observed a mutant-specific increase in the abundance of transcripts that encode proteins involved in antioxidant defence. Surprisingly, despite showing a growth defect phenotype in macrophages, the absence of the Rv0495c enhanced the pathogenicity and augmented the ability of the Mtb to grow inside the host. Additionally, our study revealed that Rv0495c-mediated immunomodulation by the pathogen helps create a favorable niche for long-term survival of Mtb inside the host. In summary, the current study underscores the fact that the truce in the war between the host and the pathogen favours long-term disease persistence in tuberculosis. We believe targeting Rv0495c could potentially be explored as a strategy to potentiate the current anti-TB regimen.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas de Bactérias/metabolismo , Tuberculose/microbiologia , Oxirredução , Homeostase/fisiologia
3.
Adv Biol (Weinh) ; 8(1): e2300349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37786307

RESUMO

Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.


Assuntos
Detergentes , Hidrogéis , Feminino , Gravidez , Humanos , Hidrogéis/farmacologia , Detergentes/metabolismo , Placenta , Matriz Extracelular/metabolismo , Bioensaio
4.
Res Microbiol ; 174(7): 104082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37244349

RESUMO

Transcription factors (TFs) of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis, regulate a network of pathways that help prolong the survival of Mtb inside the host. In this study, we have characterized a transcription repressor gene (mce3R) from the TetR family, that encodes for Mce3R protein in Mtb. We demonstrated that the mce3R gene is dispensable for the growth of Mtb on cholesterol. Gene expression analysis suggests that the transcription of genes belonging to the mce3R regulon is independent of the carbon source. We found that, in comparison to the wild type, the mce3R deleted strain (Δmce3R) generated more intracellular ROS and demonstrated reduced susceptibility to oxidative stress. Total lipid analysis suggests that mce3R regulon encoded proteins modulate the biosynthesis of cell wall lipids in Mtb. Interestingly, the absence of Mce3R increased the frequency of generation of antibiotic persisters in Mtb and imparted in-vivo growth advantage phenotype in guinea pigs. In conclusion, genes belonging to the mce3R regulon modulate the frequency of generation of persisters in Mtb. Hence, targeting mce3R regulon encoded proteins could potentiate the current regimen by eliminating persisters during Mtb infection.

5.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744152

RESUMO

Thermally-induced distortion and residual stresses in parts fabricated by the additive manufacturing (AM) process can lead to part rejection and failure. Still, the understanding of thermo-mechanical behavior induced due to the process physics in AM process is a complex task that depends upon process and material parameters. In this work, a 3D thermo-elasto-plastic model is proposed to predict the thermo-mechanical behavior (thermal and distortion field) in the laser-directed energy deposition (LDED) process using the finite element method (FEM). The predicted thermo-mechanical responses are compared to stainless steel 316L (SS 316L) deposition, with single and double bead 42-layer wall samples subject to different inter-layer dwell times, which govern the thermal response of deposited parts in LDED. In this work, the inter-layer dwell times used in experiments vary from 0 to 10 s. Based on past research into the LDED process, it is assumed that fusion and thermal cycle-induced annealing leads to stress relaxation in the material, and is accounted for in the model by instantaneously removing stresses beyond an inversely calibrated relaxation temperature. The model predicts that, for SS 316L, an increase in dwell time leads to a decrease in in situ and post-process distortion values. Moreover, increasing the number of beads leads to an increase in in situ and post-process distortion values. The calibrated numerical model's predictions are accurate when compared with in situ and post-process experimental measurements. Finally, an elongated ellipsoid heat source model is proposed to speed up the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...