Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(4): 5211-5222, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072445

RESUMO

Single-ion conducting polymer electrolytes (SIPE) are particularly promising electrolyte materials in lithium metal-based batteries since theoretical considerations suggest that the immobilization of anions avoids polarization phenomena at electrode|electrolyte interfaces. SIPE in principle could allow for fast charging while preventing cell failure induced by short circuits arising from the growth of inhomogeneous Li depositions provided that SIPE membranes possess sufficient mechanical stability. To date, different chemical structures are developed for SIPE, where new compounds are often reported through electrochemical characterization at low current rates. Experimental counterparts to model-based assumptions and determination of system limitations by correlating both models and experiments are rare in the literature. Herein, Chazalviel's model, which is derived from ion concentration gradients, is applied to theoretically determine the limiting current density (JLim) of a SIPE. Comparison with the experimentally obtained JLim reveals a large deviation between the theoretical and practical values. Beyond that, charge-discharge profiles show a distinct arcing behavior at moderate current densities (0.5 to 1 mA cm-2), indicating polarization of the cell, which is not so far reported for SIPE. In this context, by application of various electrochemical and physiochemical methods, the details of cell polarization and the role of the solid electrolyte interphase in producing arcing behavior in the voltage profiles in stripping/plating experiments are revealed, which eventually also elucidate the inconsistency of JLim.

2.
Small ; 16(35): e2002528, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734717

RESUMO

This work reports the facile synthesis of nonaqueous zinc-ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)-light-induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10-3 S cm-1 . The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite-free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV-polymerization-assisted in situ process is developed to produce ZIP (abbreviated i-ZIP), which is adopted for the first time to fabricate a nonaqueous zinc-metal polymer battery (ZMPB; VOPO4 |i-ZIP|Zn) and zinc-metal hybrid polymer supercapacitor (ZMPS; activated carbon|i-ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc-based energy storage technologies.

3.
Sci Rep ; 10(1): 4390, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152474

RESUMO

Polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) typically reveal a sudden failure in Li metal cells particularly with high energy density/voltage positive electrodes, e.g. LiNi0.6Mn0.2Co0.2O2 (NMC622), which is visible in an arbitrary, time - and voltage independent, "voltage noise" during charge. A relation with SPE oxidation was evaluated, for validity reasons on different active materials in potentiodynamic and galvanostatic experiments. The results indicate an exponential current increase and a potential plateau at 4.6 V vs. Li|Li+, respectively, demonstrating that the main oxidation onset of the SPE is above the used working potential of NMC622 being < 4.3 V vs. Li|Li+. Obviously, the SPE│NMC622 interface is unlikely to be the primary source of the observed sudden failure indicated by the "voltage noise". Instead, our experiments indicate that the Li | SPE interface, and in particular, Li dendrite formation and penetration through the SPE membrane is the main source. This could be simply proven by increasing the SPE membrane thickness or by exchanging the Li metal negative electrode by graphite, which both revealed "voltage noise"-free operation. The effect of membrane thickness is also valid with LiFePO4 electrodes. In summary, it is the cell set-up (PEO thickness, negative electrode), which is crucial for the voltage-noise associated failure, and counterintuitively not a high potential of the positive electrode.

4.
ACS Appl Mater Interfaces ; 12(1): 567-579, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825198

RESUMO

Novel cross-linked polymer electrolytes (XPEs) are synthesized by free-radical copolymerization induced by ultraviolet (UV)-light irradiation of a reactive solution, which is composed of a difunctional poly(ethylene glycol) diallyl ether oligomer (PEGDAE), a monofunctional reactive diluent 4-vinyl-1,3-dioxolan-2-one (VEC), and a stock solution containing lithium salt (lithium bis(trifluoromethanesulfonyl)imide, LiTFSI) in a carbonate-free nonvolatile plasticizer, poly(ethylene glycol) dimethyl ether (PEGDME). The resulting polymer matrix can be represented as a linear polyethylene chain functionalized with cyclic carbonate (dioxolanone) moieties and cross-linked by ethylene oxide units. A series of XPEs are prepared by varying the [O]/[Li] ratio (24 to 3) of the stock solution and thoroughly characterized using physicochemical (thermogravimetric analysis-mass spectrometry, differential scanning calorimetry, NMR, etc.) and electrochemical techniques. In addition, quantum chemical calculations are performed to elucidate the correlation between the electrochemical oxidation potential and the lithium ion-ethylene oxide coordination in the stock solution. Later, lithium bis(fluorosulfonyl)imide (LiFSI) salt is incorporated into the electrolyte system to produce a dual-salt XPE that exhibits improved electrochemical performance, a stable interface against lithium metal, and enhanced physical and chemical characteristics to be employed against high-voltage cathodes. The XPE membranes demonstrated excellent resistance against lithium dendrite growth even after reversibly plating and stripping lithium ions for more than 1000 h with a total capacity of 0.5 mAh cm-2. Finally, the XPE films are assembled in a lab-scale lithium metal battery configuration by using carbon-coated LiFePO4 (LFP) or LiNi0.8Co0.15Al0.05O2 (NCA) as a cathode and galvanostatically cycled at 20, 40, and 60 °C. Remarkably, at 20 °C, the NCA-based lithium metal cells displayed excellent cycling stability and good capacity retention (>50%) even after 1000 cycles.

5.
Langmuir ; 35(25): 8210-8219, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31125520

RESUMO

We report a thorough, multitechnique investigation of the structure and transport properties of a UV-cross-linked polymer electrolyte based on poly(ethylene oxide), tetra(ethylene glycol)dimethyl ether (G4), and lithium bis(trifluoromethane)sulfonimide. The properties of the cross-linked polymer electrolyte are compared to those of a non-cross-linked sample of same composition. The effect of UV-induced cross-linking on the physico/chemical characteristics is evaluated by X-ray diffraction, differential scanning calorimetry, shear rheology, 1H and 7Li magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, 19F and 7Li pulsed field gradient stimulated echo NMR analyses, electrochemical impedance spectroscopy, and Fourier transform Raman spectroscopy. Comprehensive analysis confirms that UV-induced cross-linking is an effective technique to suppress the crystallinity of the polymer matrix and reduce ion aggregation, yielding improved Li+ transport number (>0.5) and ionic conductivity (>0.1 mS cm?1) at ambient temperature, by tailoring the structural/morphological characteristics of the polymer matrix. Finally, the polymer electrolyte allows reversible operation with stable profile for hundreds of cycles upon galvanostatic test at ambient temperature of LiFePO4-based lithium-metal cells, which deliver full capacity at 0.05 or 0.1C current rate and keep high rate capabilities up to 1C. This enforces the role of UV-induced cross-linking in achieving excellent electrochemical characteristics, exploiting a practical, easy up-scalable process.

6.
J Chem Theory Comput ; 12(12): 5709-5718, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27767309

RESUMO

Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6- transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.

7.
ACS Appl Mater Interfaces ; 8(16): 10350-9, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27043201

RESUMO

Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate.

8.
Sci Rep ; 6: 19892, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26791572

RESUMO

Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm(-1) are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li(+)), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

9.
ChemSusChem ; 8(21): 3668-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437583

RESUMO

The first example of a photopolymerized electrolyte for a sodium-ion battery is proposed herein. By means of a preparation process free of solvents, catalysts, purification steps, and separation steps, it is possible to obtain a three-dimensional polymeric network capable of efficient sodium-ion transport. The thermal properties of the resulting solid electrolyte separator, characterized by means of thermogravimetric and calorimetric techniques, are excellent for use in sustainable energy systems conceived for safe large-scale grid storage. The photopolymerized electrolyte shows a wide electrochemical stability window up to 4.8 V versus Na/Na(+) along with the highest ionic conductivity (5.1 mS cm(-1) at 20 °C) obtained in the field of Na-ion polymer batteries so far and stable long-term constant-current charge/discharge cycling. Moreover, the polymeric networks are also demonstrated for the in situ fabrication of electrode/electrolyte composites with excellent interfacial properties, which are ideal for all-solid-state, safe, and easily upscalable device assembly.


Assuntos
Compostos Benzidrílicos/química , Fontes de Energia Elétrica , Eletrólitos/química , Metacrilatos/química , Polietilenoglicóis/química , Sódio/química , Condutividade Elétrica , Processos Fotoquímicos , Temperatura
10.
ACS Appl Mater Interfaces ; 7(23): 12961-71, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26020809

RESUMO

Profoundly ion-conducting, self-standing, and tack-free ethylene oxide-based polymer electrolytes encompassing a room-temperature ionic liquid (RTIL) with specific amounts of lithium salt are successfully prepared via a rapid and easily upscalable process including a UV irradiation step. All prepared materials are thoroughly characterized in terms of their physical, chemical, and morphological properties and eventually galvanostatically cycled in lab-scale lithium batteries (LIBs) exploiting a novel direct polymerization procedure to get intimate electrode/electrolyte interfacial characteristics. The promising multipurpose characteristics of the newly elaborated materials are demonstrated by testing them in dye-sensitized solar cells (DSSCs), where the introduction of the iodine/iodide-based redox mediator in the polymer matrix assured the functioning of a lab-scale test cell with conversion efficiency exceeding 6% at 1 sun. The reported results enlighten the promising prospects of the material to be successfully implemented as stable, durable, and efficient electrolyte in next-generation energy conversion and storage devices.

11.
Sci Rep ; 5: 9554, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25906088

RESUMO

The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·10(14) cm(-2) has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T(2) component - that can be associated with electron-electron scattering - and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy.

12.
Phys Chem Chem Phys ; 15(11): 3706-11, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23403593

RESUMO

Here we report on a novel polymer electrolyte membrane for quasi-solid dye-sensitized solar cells (DSSCs) with excellent efficiency and extended durability. The electrolyte is prepared by an elegant, rapid and cheap UV-induced polymerization method and the chemometric approach is used for the first time, to the best of our knowledge, for the optimization and the fine tuning of the experimental conditions.

13.
Phys Rev Lett ; 108(6): 066807, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401106

RESUMO

By using an electrochemical gating technique with a new combination of polymer and electrolyte, we were able to inject surface charge densities n(2D) as high as 3.5×10(15) e/cm(2) in gold films and to observe large relative variations in the film resistance, ΔR/R', up to 10% at low temperature. ΔR/R' is a linear function of n(2D)-as expected within a free-electron model-if the film is thick enough (≥25 nm); otherwise, a tendency to saturation due to size effects is observed. The application of this technique to 2D materials might allow extending the field-effect experiments to a range of charge doping where large conductance modulations and, in some cases, even the occurrence of superconductivity are expected.

14.
Membranes (Basel) ; 2(2): 307-24, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24958178

RESUMO

In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

15.
Membranes (Basel) ; 2(4): 687-704, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24958425

RESUMO

In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

16.
ACS Appl Mater Interfaces ; 2(11): 3192-200, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20949927

RESUMO

Silver metalized methacrylate films are prepared by single-step UV curing process with good conductivity on both sides. The major component of the composite is Bisphenol A ethoxylate dimethacrylate, which can be photopolymerized by a photoreactive initiator under UV light. Under the same conditions of UV irradiation, silver ions are deposited as metal nanoparticles while the pyrrole is oxidized to polypyrrole. The migration of silver ions and pyrrole toward both surfaces during polymerization leads to the formation of a metallo-polymer capacitor. The composite films are characterized by SEM-EDX and electrical measurements for possible applications as capacitors in flexible and/or nonplanar electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA