Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
iScience ; 26(10): 107708, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720087

RESUMO

Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.

2.
STAR Protoc ; 2(4): 100992, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934960

RESUMO

Here, we detail a surface biotinylation technique used to label surface-expressed proteins in primary neuronal cultures. Surface proteins are labeled with membrane-impermeant Sulfo-NHS-SS-biotin, and isolated by pull-down with streptavidin beads followed by western blotting to measure levels of surface expression of the protein of interest under different conditions. We have used this approach extensively to monitor activity-dependent changes in α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptor (KAR) subunits. However, this protocol can be used to investigate any surface-expressed protein. For complete details on the use and execution of this protocol, please refer to Nair et al. (2021).


Assuntos
Biotinilação/métodos , Técnicas Citológicas/métodos , Neurônios , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Neurônios/citologia , Neurônios/metabolismo , Ratos
3.
iScience ; 24(9): 103029, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553130

RESUMO

It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.

4.
Neuropharmacology ; 195: 108569, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915142

RESUMO

Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.


Assuntos
Encéfalo/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Sinapses/metabolismo
5.
Neuropharmacology ; 196: 108540, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794245

RESUMO

Synaptic plasticity has classically been characterized to involve the NMDA and AMPA subtypes of glutamate receptors, with NMDA receptors providing the key trigger for the induction of long-term plasticity leading to changes in AMPA receptor expression. Here we review the more subtle roles played by kainate receptors, which contribute critical postsynaptic signalling as well as playing major presynaptic auto-receptor roles. We focus on two research areas: plasticity of kainate receptors themselves and the contribution they make to the plasticity of synaptic transmission. This article is part of the special issue on Glutamate Receptors - Kainate receptors.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de Ácido Caínico/fisiologia , Animais , Humanos
6.
J Neurochem ; 156(2): 145-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32538470

RESUMO

SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.


Assuntos
Sumoilação/fisiologia , Sinapses/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...