Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(48): e202311523, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37800603

RESUMO

Nitrite (NO2 - ) and nitric oxide (NO) interconversion is crucial for maintaining optimum NO flux in mammalian physiology. Herein we demonstrate that [L2 CuII (nitrite)]+ moieties (in 2 a and 2 b; where, L = Me2 PzPy and Me2 PzQu) with distorted octahedral geometry undergo facile reduction to provide tetrahedral [L2 CuI ]+ (in 3 a and 3 b) and NO in the presence of biologically relevant reductants, such as 4-methoxy-2,6-di-tert-butylphenol (4-MeO-2,6-DTBP, a tyrosine model) and N-benzyl-1,4-dihydronicotinamide (BNAH, a NAD(P)H model). Interestingly, the reaction of excess NO gas with [L2 CuII (MeCN)2 ]2+ (in 1 a) provides a putative {CuNO}10 species, which is effective in mediating the nitrosation of various nucleophiles, such as thiol and amine. Generation of the transient {CuNO}10 species in wet acetonitrile leads to NO2 - as assessed by Griess assay and 14 N/15 N-FTIR analyses. A detailed study reveals that the bidirectional NOx -reactivity, namely, nitrite reductase (NIR) and NO oxidase (NOO), at a common CuII site, is governed by the geometric-preference-driven facile CuII /CuI redox process. Of broader interest, this study not only highlights potential strategies for the design of copper-based catalysts for nitrite reduction, but also strengthens the previous postulates regarding the involvement of red copper proteins in denitrification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...