Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872461

RESUMO

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Assuntos
Fibroblastos , Animais , Masculino , Camundongos , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Miocárdio/metabolismo , Miocárdio/citologia , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/genética , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Miócitos Cardíacos/metabolismo
2.
Comp Med ; 73(4): 312-323, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37527924

RESUMO

Fibrosis that occurs after nonfatal myocardial infarction (MI) is an irreversible reparative cardiac tissue remodeling process characterized by progressive deposition of highly cross-linked type I collagen. No currently available therapeutic strategy prevents or reverses MI-associated fibrotic scarring of myocardium. In this study, we used an epicardial graft prepared of porcine cholecystic extracellular matrix to treat experimental nonfatal MI in rats. Graft-assisted healing was characterized by reduced fibrosis, with scanty deposition of type I collagen. Histologically, the tissue response was associated with a favorable regenerative reaction predominated by CD4-positive helper T lymphocytes, enhanced angiogenesis, and infiltration of proliferating cells. These observations indicate that porcine cholecystic extracellular matrix delayed the fibrotic reaction and support its use as a potential biomaterial for mitigating fibrosis after MI. Delaying the progression of cardiac tissue remodeling may widen the therapeutic window for management of scarring after MI.


Assuntos
Infarto do Miocárdio , Doenças dos Suínos , Ratos , Suínos , Animais , Colágeno Tipo I , Cicatriz/patologia , Remodelação Ventricular , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miocárdio/patologia , Matriz Extracelular/patologia , Fibrose
3.
J Biomed Mater Res B Appl Biomater ; 110(9): 2039-2049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35305082

RESUMO

Cardiac tissue engineering using cells, scaffolds or signaling molecules is a promising approach for replacement or repair of damaged myocardium. This study addressed the contemporary need for a conductive biomimetic nanocomposite scaffold for cardiac tissue engineering by examining the use of a gold nanoparticle-incorporated porcine cholecystic extracellular matrix for the same. The scaffold had an electrical conductivity (0.74 ± 0.03 S/m) within the range of native myocardium. It was a suitable substrate for the growth and differentiation of cardiomyoblast (H9c2) as well as rat mesenchymal stem cells to cardiomyocyte-like cells. Moreover, as an epicardial patch, the scaffold promoted neovascularisation and cell proliferation in infarcted myocardium of rats. It was concluded that the gold nanoparticle coated cholecystic extracellular matrix is a prospective biomaterial for cardiac tissue engineering.


Assuntos
Nanopartículas Metálicas , Alicerces Teciduais , Animais , Condutividade Elétrica , Matriz Extracelular , Ouro/química , Miocárdio , Miócitos Cardíacos , Estudos Prospectivos , Ratos , Suínos , Engenharia Tecidual , Alicerces Teciduais/química
4.
ACS Appl Bio Mater ; 4(4): 3304-3319, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014417

RESUMO

Polypropylene (PP) meshes are widely used for repairing skeletal muscle defects like abdominal hernia despite the chances of undesirable pro-inflammatory tissue reactions that demand revision surgeries in about 45% of cases. Attempts have been made to address the problem by modifying the mesh surface and architecture. These procedures have yielded only incremental improvements in the management of overall postoperative complications, and the search for a clinically viable therapeutic strategy continues. This study deployed a tissue engineering approach for mitigating PP-induced adverse tissue reaction by dip-coating the mesh with a hydrogel formulation of the porcine cholecystic extracellular matrix (CECM). The biomaterial properties of the CECM hydrogel-coated PP (C-PP) meshes were studied and their biocompatibility was evaluated by in vitro and in vivo tests based on ISO standards. Further, the nature of tissue reactions induced by the hydrogel-coated mesh and a commercial PP hernia repair graft was compared in a rat model of partial-thickness abdominal wall defect. Histomorphologically, in comparison with the PP graft-induced tissue reaction, C-PP caused a favorable graft-acceptance response characterized by reduced numbers of pro-inflammatory M1 macrophages and cytotoxic lymphocytes. Remarkably, the differential inflammatory response of the C-PP graft-assisted healing was associated with a fibrotic reaction predominated by deposition of type I collagen rather than type III collagen, as desired during skeletal muscle repair. It was concluded that the CECM hydrogel is a potential biomaterial for surface modification of polymeric biomedical devices.


Assuntos
Materiais Revestidos Biocompatíveis/química , Matriz Extracelular/química , Vesícula Biliar/química , Hidrogéis/química , Polipropilenos/química , Telas Cirúrgicas , Animais , Linhagem Celular , Teste de Materiais , Camundongos , Tamanho da Partícula , Propriedades de Superfície , Suínos , Engenharia Tecidual
5.
ACS Appl Bio Mater ; 4(4): 3320-3331, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014418

RESUMO

Compromised angiogenesis is a major factor contributing delayed wound healing in diabetic patients. Graft-assisted healing using synthetic and natural scaffolds supplemented with micromolecules for stimulating angiogenesis is the contemporary tissue engineering strategy for treating diabetic wounds. This study deployed the carbodiimide chemical reaction for coupling gelatin with a porcine cholecyst-derived scaffold (CDS) for enhancing angiogenesis. The modification was confirmed by the trinitrobenzene sulfonic acid assay and scanning electron microscopy. The gelatin-coupled CDS was more stable than the bare CDS in an in vitro proteolytic environment and allowed survival of keratinocytes (HaCaT), indicating its suitability for chronic skin wound application. The gelatin coupling brought significant improvement in the in vitro angiogenic potential of the CDS as evident from the enhanced viability of endothelial cells. An in ovo chorioallantoic membrane assay also demonstrated the angiogenic potential of the modified scaffold. Further, the modified scaffold promoted angiogenesis and aided faster healing of full-thickness excision wounds in streptozotocin-induced diabetic rats. It is concluded that the gelatin-coupled CDS is a potential advanced wound care material for treating diabetic wounds.


Assuntos
Materiais Biocompatíveis/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Vesícula Biliar/química , Gelatina/farmacologia , Neovascularização Patológica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Diabetes Mellitus Experimental/induzido quimicamente , Gelatina/química , Teste de Materiais , Neovascularização Patológica/induzido quimicamente , Tamanho da Partícula , Ratos , Ratos Wistar , Estreptozocina , Suínos , Engenharia Tecidual , Alicerces Teciduais/química
6.
Colloids Surf B Biointerfaces ; 157: 130-137, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28578271

RESUMO

Extracellular matrices of xenogeneic origin have been extensively used for biomedical applications, despite the possibility of heterogeneity in structure. Surface modification of biologically derived biomaterials using nanoparticles is an emerging strategy for improving topographical homogeneity when employing these scaffolds for sophisticated tissue engineering applications. Recently, as a tissue engineering scaffold, cholecyst derived extracellular matrix (C-ECM) has been shown to have several advantages over extracellular matrices derived from other organs such as jejunum and urinary bladder. This study explored the possibility of adding gold nanoparticles, which have a large surface area to volume ratio on C-ECM for achieving homogeneity in surface architecture, a requirement for cardiac tissue engineering. In the current study, gold nanoparticles (AuNPs) were synthesized and functionalised for conjugating with a porcine cholecystic extracellular matrix scaffold. The conjugation of nanoparticles to C-ECM was achieved by 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide/N-hydroxysuccinimide chemistry and further characterized by Fourier transform infrared spectroscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The physical properties of the modified scaffold were similar to the original C-ECM. Biological properties were evaluated by using H9c2 cells, a cardiomyoblast cell line commonly used for cellular and molecular studies of cardiac cells. The modified scaffold was found to be a suitable substrate for the growth and proliferation of the cardiomyoblasts. Further, the non-cytotoxic nature of the modified scaffold was established by direct contact cytotoxicity testing and live/dead staining. Thus, the modified C-ECM appears to be a potential biomaterial for cardiac tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Aminas/química , Animais , Matriz Extracelular/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...