Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13427-13439, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524456

RESUMO

Inorganic photoacids and photobases comprising of photoactive transition metal complexes (TMCs) offer the ability to modulate proton transfer reactions through light irradiation, while utilizing the excellent optical properties of the latter. This provides a powerful tool for precise control over chemical reactions and processes, with implications for both fundamental science and practical applications. In this contribution, we present a novel molecular architecture amending an Fe-NHC complex with a pendant quinoline, as a prototypical photobase, as a representative earth-abundant TMC based inorganic photobase. We characterize the excited-state properties and proton-transfer dynamics using steady-state absorption and emission spectroscopy as well as pump wavelength dependent transient absorption spectroscopy in various protic solvents. The kinetics and thermodynamics of proton transfer in the quinoline moiety are influenced by both the presence of the metal center and the choice of the solvent. Furthermore, we see indications of intramolecular energy transfer from the quinoline to the MLCT state as a limiting factor for panchromatic photobasicity of the complex.

2.
Dalton Trans ; 52(48): 18220-18232, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013458

RESUMO

In the frame of our research aiming to develop efficient triplet-emitting materials, we are exploring the concept of introducing additional heavy atoms into cyclometalated transition metal complexes to enhance intersystem-crossing (ISC) and thus triplet emission through increased spin-orbit coupling (SOC). In an in-depth proof-of-principle study we investigated the double cyclometalated Pt(II) complexes [Pt(C^N^C)(PnPh3)] (HC^N^CH = 2,6-diphenyl-pyridine (H2dpp) or dibenzoacridine (H2dba); Pn = pnictogen atoms P, As, Sb, or Bi) through a combined experimental and theoretical approach. The derivatives containing Pn = P, As, and Sb were synthesised and characterised comprehensively using single crystal X-ray diffraction (scXRD), UV-vis absorption and emission spectroscopy, transient absorption (TA) spectroscopy and cyclic voltammetry (CV). Across the series P < As < Sb, a red-shift is observed concerning absorption and emission maxima as well as optical and electrochemical HOMO-LUMO gaps. Increased photoluminescence quantum yields ΦL and radiative rates kr from mixed metal-to-ligand charge transfer (MLCT)/ligand centred (LC) triplet states are observed for the heavier homologues. Transient absorption spectroscopy showed processes in the ps range that were assigned to the population of the T1 state by ISC. The heavy PnPh3 ancillary ligands are found to enhance the emission efficiency due to both higher Pt-Pn bond strength and stronger SOC related to increased MLCT character of the excited states. The experimental findings are mirrored in hybrid (TD-)DFT calculations. This allowed for extrapolation to the rather elusive Bi derivatives, which were synthetically not accessible. This shortcoming is attributed to the transmetalation of phenyl groups from BiPh3 to Pt, as supported by experimental NMR/MS as well as DFT studies.

3.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296617

RESUMO

The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h']diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around -1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around -1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around -2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs.

4.
Inorg Chem ; 60(12): 9157-9173, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081456

RESUMO

Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.

5.
Nanoscale Adv ; 3(11): 3288-3297, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133651

RESUMO

Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties. On the other hand, femtosecond pulsed excitation is shown to provide additional advantages in tuning of trap stiffness through harnessing optical and thermal nonlinearity. Here we demonstrate that (metal/dielectric hybrid) core/shell type and hollow-core type nanoparticles experience more force than conventional core-type nanoparticles under both continuous-wave and, in particular, ultrafast pulsed excitation. Thus, for the first time, we show how tuning both materials properties as well as the nature of excitation can impart unprecedented control over nanoscale optical trapping and manipulation leading to a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...