Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 41(2): 360-373, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34543193

RESUMO

Although deep networks have been shown to perform very well on a variety of medical imaging tasks, inference in the presence of pathology presents several challenges to common models. These challenges impede the integration of deep learning models into real clinical workflows, where the customary process of cascading deterministic outputs from a sequence of image-based inference steps (e.g. registration, segmentation) generally leads to an accumulation of errors that impacts the accuracy of downstream inference tasks. In this paper, we propose that by embedding uncertainty estimates across cascaded inference tasks, performance on the downstream inference tasks should be improved. We demonstrate the effectiveness of the proposed approach in three different clinical contexts: (i) We demonstrate that by propagating T2 weighted lesion segmentation results and their associated uncertainties, subsequent T2 lesion detection performance is improved when evaluated on a proprietary large-scale, multi-site, clinical trial dataset acquired from patients with Multiple Sclerosis. (ii) We show an improvement in brain tumour segmentation performance when the uncertainty map associated with a synthesised missing MR volume is provided as an additional input to a follow-up brain tumour segmentation network, when evaluated on the publicly available BraTS-2018 dataset. (iii) We show that by propagating uncertainties from a voxel-level hippocampus segmentation task, the subsequent regression of the Alzheimer's disease clinical score is improved.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Incerteza
2.
Med Image Anal ; 59: 101557, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677438

RESUMO

Deep learning networks have recently been shown to outperform other segmentation methods on various public, medical-image challenge datasets, particularly on metrics focused on large pathologies. For diseases such as Multiple Sclerosis (MS), however, monitoring all the focal lesions visible on MRI sequences, even very small ones, is essential for disease staging, prognosis, and evaluating treatment efficacy. Small lesion segmentation presents significant challenges to popular deep learning models. This, coupled with their deterministic predictions, hinders their clinical adoption. Uncertainty estimates for these predictions would permit subsequent revision by clinicians. We present the first exploration of multiple uncertainty estimates based on Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) in the context of deep networks for lesion detection and segmentation in medical images. Specifically, we develop a 3D MS lesion segmentation CNN, augmented to provide four different voxel-based uncertainty measures based on MC dropout. We train the network on a proprietary, large-scale, multi-site, multi-scanner, clinical MS dataset, and compute lesion-wise uncertainties by accumulating evidence from voxel-wise uncertainties within detected lesions. We analyze the performance of voxel-based segmentation and lesion-level detection by choosing operating points based on the uncertainty. Uncertainty filtering improves both voxel and lesion-wise TPR and FDR on remaining, certain predictions compared to sigmoid-based TPR/FDR curves. Small lesions and lesion-boundaries are the most uncertain regions, which is consistent with human-rater variability.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Teorema de Bayes , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA