Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
3.
Science ; 384(6697): eadk0582, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753770

RESUMO

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Imunização Secundária , Nanopartículas , Vacinas de mRNA , Animais , Humanos , Camundongos , Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas , Técnicas de Introdução de Genes , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-1/genética , Lipossomos , Células B de Memória/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Hipermutação Somática de Imunoglobulina , Vacinas de mRNA/imunologia , Feminino , Camundongos Endogâmicos C57BL
4.
Nat Immunol ; 25(6): 1083-1096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816616

RESUMO

Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Anticorpos Anti-HIV , HIV-1 , Centro Germinativo/imunologia , Animais , Camundongos , Humanos , Linfócitos B/imunologia , HIV-1/imunologia , Anticorpos Anti-HIV/imunologia , Afinidade de Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Técnicas de Introdução de Genes , Camundongos Transgênicos , Anticorpos Amplamente Neutralizantes/imunologia , Camundongos Endogâmicos C57BL
5.
Sci Immunol ; 9(95): eadn0622, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38753808

RESUMO

Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.


Assuntos
Anticorpos Amplamente Neutralizantes , Nanopartículas , RNA Mensageiro , Animais , Camundongos , Humanos , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Nanopartículas/química , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Lipídeos/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Feminino , Anticorpos Monoclonais , Lipossomos
6.
Immunity ; 57(5): 1141-1159.e11, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38670113

RESUMO

Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinação , Animais , Camundongos , Humanos , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Vírus da Influenza A/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Substituição de Aminoácidos , Linfócitos B/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia
7.
Science ; 383(6679): 205-211, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207021

RESUMO

Antibodies are produced at high rates to provide immunoprotection, which puts pressure on the B cell translational machinery. Here, we identified a pattern of codon usage conserved across antibody genes. One feature thereof is the hyperutilization of codons that lack genome-encoded Watson-Crick transfer RNAs (tRNAs), instead relying on the posttranscriptional tRNA modification inosine (I34), which expands the decoding capacity of specific tRNAs through wobbling. Antibody-secreting cells had increased I34 levels and were more reliant on I34 for protein production than naïve B cells. Furthermore, antibody I34-dependent codon usage may influence B cell passage through regulatory checkpoints. Our work elucidates the interface between the tRNA pool and protein production in the immune system and has implications for the design and selection of antibodies for vaccines and therapeutics.


Assuntos
Anticorpos , Formação de Anticorpos , Linfócitos B , Uso do Códon , Cadeias Pesadas de Imunoglobulinas , Inosina , RNA de Transferência , Formação de Anticorpos/genética , Códon/genética , Inosina/genética , Inosina/metabolismo , RNA de Transferência/genética , Anticorpos/genética , Humanos , Linfócitos B/imunologia , Cadeias Pesadas de Imunoglobulinas/genética
8.
Ann Card Anaesth ; 26(2): 223-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706393

RESUMO

The term "cold agglutinin (CA)" refers to a group of disorders caused by anti-erythrocyte autoantibodies that preferentially bind RBCs at cold temperatures (4°C-18°C). CAs contribute to 10 to 15% of autoimmune hemolytic anemia. We report a case of CAs diagnosed intraoperatively during emergency mitral valve replacement.


Assuntos
Anemia Hemolítica Autoimune , Ponte Cardiopulmonar , Humanos , Temperatura Baixa , Crioglobulinas , Autoanticorpos
9.
Immunity ; 55(11): 2168-2186.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179690

RESUMO

Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , RNA Mensageiro/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana
10.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987201

RESUMO

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Assuntos
Linfócitos B , Centro Germinativo , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos , Epitopos , Imunidade Humoral , Camundongos
11.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788599

RESUMO

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Epitopos/genética , Engenharia Genética , Humanos , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Relação Estrutura-Atividade , Vacinação
12.
EMBO J ; 40(2): e105926, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258500

RESUMO

B-cell receptor (BCR) knock-in (KI) mouse models play an important role in vaccine development and fundamental immunological studies. However, the time required to generate them poses a bottleneck. Here we report a one-step CRISPR/Cas9 KI methodology to combine the insertion of human germline immunoglobulin heavy and light chains at their endogenous loci in mice. We validate this technology with the rapid generation of three BCR KI lines expressing native human precursors, instead of computationally inferred germline sequences, to HIV broadly neutralizing antibodies. We demonstrate that B cells from these mice are fully functional: upon transfer to congenic, wild type mice at controlled frequencies, such B cells can be primed by eOD-GT8 60mer, a germline-targeting immunogen currently in clinical trials, recruited to germinal centers, secrete class-switched antibodies, undergo somatic hypermutation, and differentiate into memory B cells. KI mice expressing functional human BCRs promise to accelerate the development of vaccines for HIV and other infectious diseases.


Assuntos
Linfócitos B/metabolismo , Sistemas CRISPR-Cas/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Sistemas CRISPR-Cas/imunologia , Linhagem Celular , Técnicas de Introdução de Genes/métodos , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Células HEK293 , HIV-1/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores de Antígenos de Linfócitos B/imunologia
13.
BMC Infect Dis ; 20(1): 756, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059622

RESUMO

BACKGROUND: Infection with the Human Immunodeficiency Virus (HIV) dramatically increases the risk of developing active tuberculosis (TB). Several studies have indicated that co-infection with TB increases the risk of HIV progression and death. Sub-Saharan Africa bears the brunt of these dual epidemics, with about 2.4 million HIV-infected people living with TB. The main objective of our study was to assess whether the pre-HAART CD4+ T-lymphocyte counts and percentages could serve as biomarkers for post-HAART treatment immune-recovery in HIV-positive children with and without TB co-infection. METHODS: The data analyzed in this retrospective study were collected from a cohort of 305 HIV-infected children being treated with HAART. A Lehmann family of ROC curves were used to assess the diagnostic performance of pre- HAART treatment CD4+ T-lymphocyte count and percentage as biomarkers for post-HAART immune recovery. The Kaplan-Meier estimator was used to compare differences in post-HAART recovery times between patients with and without TB co-infection. RESULTS: We found that the diagnostic performance of both pre-HARRT treatment CD4+ T-lymphocyte count and percentage was comparable and achieved accuracies as high as 74%. Furthermore, the predictive capability of pre-HAART CD4+ T-lymphocyte count and percentage were slightly better in TB-negative patients. Our analyses also indicate that TB-negative patients have a shorter recovery time compared to the TB-positive patients. CONCLUSIONS: Pre-HAART CD4+ T-lymphocyte count and percentage are stronger predictors of immune recovery in TB-negative pediatric patients, suggesting that TB co-infection complicates the treatment of HIV in this cohort. These findings suggest that the detection and treatment of TB is essential for the effectiveness of HAART in HIV-infected pediatric patients.


Assuntos
Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Coinfecção , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Tuberculose/complicações , Infecções Oportunistas Relacionadas com a AIDS , Biomarcadores/análise , Linfócitos T CD4-Positivos/virologia , Criança , Pré-Escolar , Feminino , Gana , Infecções por HIV/microbiologia , Infecções por HIV/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Curva ROC , Estudos Retrospectivos , Resultado do Tratamento , Tuberculose/virologia
14.
Mikrochim Acta ; 187(4): 246, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32215724

RESUMO

A biocompatible natural polysaccharide (PSP001) isolated from the fruit rind of Punica granatum was conjugated with L-cysteine (Y) to be used as a skeleton for the fabrication of fluorescent gold nanoclusters (AuNCs) represented as PSP-Y-AuNCs. With an average size of ~ 6 nm, PSP-Y-AuNCs demonstrated high quantum yield (31%), with a pH-sensitive fluorescence emission behavior. An emission maximum of 520 nm was obtained at acidic pH, which was blue shifted with increasing pH. This feature provides the possibilities for accurate ratiometric pH imaging. The PSP-Y-AuNCs not only demonstrated excellent biocompatibility with cancer cells and isolated peripheral lymphocytes and red blood cells but also demonstrated to be an active molecular imaging probe with appealing cellular uptake efficiency. The investigations with BALB/c mice further confirmed the non-toxic nature and in vivo imaging potential of the AuNCs. Estimation of the bio-distribution on solid tumor bearing syngeneic murine models revealed a tumor-targeted enhanced fluorescence emission pattern which is attributed to the pH responsive fluorescence behavior and the acidic microenvironment of the tumor. These findings were further confirmed with an impressive tumor accumulation pattern displayed in a xenograft of human cancer bearing nude mice. On account of their impressive biocompatibility and photophysical features, PSP-Y-AuNCs can exploited for the real-time fluorescence imaging of cancer tissues. Graphical abstract Fluorescent gold nanoclusters (PSP-Y-AuNCs) fabricated using a non-toxic natural polysaccharide (PSP001) demonstrated pH sensitive fluorescence emission pattern. The increased fluorescence readouts at acidic conditions and excellent biocompatibility made the PSP-Y-AuNCs an appealing candidate for in vivo tumor imaging applications.


Assuntos
Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Polissacarídeos/química , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/toxicidade , Frutas/química , Ouro/química , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Polissacarídeos/toxicidade , Punica granatum/química
15.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30087111

RESUMO

Here, we describe a one-step, in vivo CRISPR/Cas9 nuclease-mediated strategy to generate knock-in mice. We produced knock-in (KI) mice wherein a 1.9-kb DNA fragment bearing a pre-arranged human B-cell receptor heavy chain was recombined into the native murine immunoglobulin locus. Our methodology relies on Cas9 nuclease-induced double-stranded breaks directed by two sgRNAs to occur within the specific target locus of fertilized oocytes. These double-stranded breaks are subsequently repaired via homology-directed repair by a plasmid-borne template containing the pre-arranged human immunoglobulin heavy chain. To validate our knock-in mouse model, we examined the expression of the KI immunoglobulin heavy chains by following B-cell development and performing single B-cell receptor sequencing. We optimized this strategy to generate immunoglobulin KI mice in a short amount of time with a high frequency of homologous recombination (30-50%). In the future, we envision that such knock-in mice will provide much needed vaccination models to evaluate immunoresponses against immunogens specific for various infectious diseases.


Assuntos
Linfócitos B/imunologia , Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Cadeias Pesadas de Imunoglobulinas , Animais , Linfócitos B/citologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Camundongos Transgênicos
16.
Elife ; 72018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337666

RESUMO

Wiskott-Aldrich syndrome (WAS) is an immune pathology associated with mutations in WAS protein (WASp) or in WASp interacting protein (WIP). Together with the small GTPase Cdc42 and other effectors, these proteins participate in the remodelling of the actin network downstream of BCR engagement. Here we show that mice lacking the adaptor protein ITSN2, a G-nucleotide exchange factor (GEF) for Cdc42 that also interacts with WASp and WIP, exhibited increased mortality during primary infection, incomplete protection after Flu vaccination, reduced germinal centre formation and impaired antibody responses to vaccination. These defects were found, at least in part, to be intrinsic to the B cell compartment. In vivo, ITSN2 deficient B cells show a reduction in the expression of SLAM, CD84 or ICOSL that correlates with a diminished ability to form long term conjugates with T cells, to proliferate in vivo, and to differentiate into germinal centre cells. In conclusion, our study not only revealed a key role for ITSN2 as an important regulator of adaptive immune-response during vaccination and viral infection but it is also likely to contribute to a better understanding of human immune pathologies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linfócitos B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/patologia , Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Adesão Celular , Proliferação de Células , Vacinas contra Influenza/administração & dosagem , Camundongos , Análise de Sobrevida
17.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249358

RESUMO

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Inata , Influenza Humana/imunologia , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Animais , Galinhas , Cães , Centro Germinativo/citologia , Humanos , Interleucina-4/metabolismo , Macaca , Macrófagos/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
19.
Int J Psychophysiol ; 120: 86-95, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28711698

RESUMO

The present study is aimed at the classification of mild cognitive impairment (MCI) EEG by combining complexity and synchronization features based on quantifiers from the common platform of recurrence based analysis. Recurrence rate (RR) of recurrence quantification analysis (RQA) is used for complexity analysis and RR of cross recurrence quantification analysis (CRQA) is used for synchronization analysis. The investigations are carried out on EEG from two states (i) resting eyes closed (EC) and (ii) short term memory task (STM).The results of our analysis show lower levels of complexity and higher levels of inter and intra hemispheric synchronisation in the MCI EEG compared to that of normal controls (NC) as indicated by the statistically significant higher value of RQA RR and CRQA RR. The results also evidence the effectiveness of memory activation task by bringing out the characteristic features of MCI EEG in task specific regions of temporal, parietal and frontal lobes under the STM condition.A new approach of combining complexity and synchronization features for EEG classification of MCI subjects is proposed, based on the geometrical signal separation in a feature space formed by RQA and CRQA RR values. The results of linear classification analysis of MCI and NC EEG also reveals the effectiveness of task state analysis by the enhanced classification efficiency under the cognitive load of STM condition compared to that of EC condition.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Disfunção Cognitiva/classificação , Disfunção Cognitiva/fisiopatologia , Eletroencefalografia , Idoso , Feminino , Análise de Fourier , Lateralidade Funcional/fisiologia , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Recidiva , Descanso
20.
J Exp Med ; 214(8): 2471-2490, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28739603

RESUMO

Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non-HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...