Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12505, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532745

RESUMO

Evaluation, prediction, and measurement of carbon dioxide (CO2) solubility in different polymers are crucial for engineers in various chemical applications, such as extraction and generation of novel materials. In this paper, correlations based on gene expression programming (GEP) were generated to predict the value of carbon dioxide solubility in three polymers. Results showed that the generated correlations could represent an outstanding efficiency and provide predictions for carbon dioxide solubility with satisfactory average absolute relative errors of 9.71%, 5.87%, and 1.63% for polystyrene (PS), polybutylene succinate-co-adipate (PBSA), and polybutylene succinate (PBS), respectively. Trend analysis based on Henry's law illustrated that increasing pressure and decreasing temperature lead to an increase in carbon dioxide solubility. Finally, outlier discovery was applied using the leverage approach to detect the suspected data points. The outlier detection demonstrated the statistical validity of the developed correlations. William's plot of three generated correlations showed that all of the data points are located in the valid zone except one point for PBS polymer and three points for PS polymer.

2.
J Phys Chem B ; 124(28): 6037-6045, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32544334

RESUMO

Lattice constant is one of the paramount parameters that mark the quality of thin film fabrication. Numerous research efforts have been made to calculate and measure lattice constant, including experimental and empirical approaches. Not withstanding these efforts, a reliable and simple-to-use model is still needed to predict accurately this vital parameter. In this study, gene expression programming (GEP) approach was implemented to establish trustworthy model for prediction of the lattice constant of A2XY6 (A = K, Cs, Rb, TI; X = tetravalent cation; and Y = F, Cl, Br, I) cubic crystals based on a comprehensive experimental database. The obtained results showed that the proposed GEP correlation provides excellent prediction performance with an overall average absolute relative deviation (AARD%) of 0.3596% and a coefficient of determination (R2) of 0.9965. Moreover, the comparison of the performance between the newly proposed correlation and the best pre-existing paradigms demonstrated that the established GEP correlation is more robust, reliable, and efficient than the prior models for prediction of lattice constant of A2XY6 cubic crystals.

3.
Molecules ; 26(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396329

RESUMO

Accurate determination of the physicochemical characteristics of ionic liquids (ILs), especially viscosity, at widespread operating conditions is of a vital role for various fields. In this study, the viscosity of pure ILs is modeled using three approaches: (I) a simple group contribution method based on temperature, pressure, boiling temperature, acentric factor, molecular weight, critical temperature, critical pressure, and critical volume; (II) a model based on thermodynamic properties, pressure, and temperature; and (III) a model based on chemical structure, pressure, and temperature. Furthermore, Eyring's absolute rate theory is used to predict viscosity based on boiling temperature and temperature. To develop Model (I), a simple correlation was applied, while for Models (II) and (III), smart approaches such as multilayer perceptron networks optimized by a Levenberg-Marquardt algorithm (MLP-LMA) and Bayesian Regularization (MLP-BR), decision tree (DT), and least square support vector machine optimized by bat algorithm (BAT-LSSVM) were utilized to establish robust and accurate predictive paradigms. These approaches were implemented using a large database consisting of 2813 experimental viscosity points from 45 different ILs under an extensive range of pressure and temperature. Afterward, the four most accurate models were selected to construct a committee machine intelligent system (CMIS). Eyring's theory's results to predict the viscosity demonstrated that although the theory is not precise, its simplicity is still beneficial. The proposed CMIS model provides the most precise responses with an absolute average relative deviation (AARD) of less than 4% for predicting the viscosity of ILs based on Model (II) and (III). Lastly, the applicability domain of the CMIS model and the quality of experimental data were assessed through the Leverage statistical method. It is concluded that intelligent-based predictive models are powerful alternatives for time-consuming and expensive experimental processes of the ILs viscosity measurement.


Assuntos
Algoritmos , Inteligência Artificial , Teorema de Bayes , Líquidos Iônicos/química , Solventes/química , Máquina de Vetores de Suporte , Temperatura , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA