Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(42): 49712-49726, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815984

RESUMO

Device implementation of reservoir computing, which is expected to enable high-performance data processing in simple neural networks at a low computational cost, is an important technology to accelerate the use of artificial intelligence in the real-world edge computing domain. Here, we propose an ionic liquid-based physical reservoir device (IL-PRD), in which copper cations dissolved in an IL induce diverse electrochemical current responses. The origin of the electrochemical current from the IL-PRD was investigated spectroscopically in detail. After operating the device under various operating conditions, X-ray photoelectron spectroscopy of the IL-PRD revealed that electrochemical reactions involving Cu, Cu2O, Cu(OH)2, CuSx, and H2O occur at the Pt electrode/IL interface. These products are considered information transmission materials in IL-PRD similar to neurotransmitters in biological neurons. By introducing the Faradaic current components due to the electrochemical reactions of these materials into the output signal of IL-PRD, we succeeded in improving the time-series data processing performance of the nonlinear autoregressive moving average task. In addition, the information processing efficiency in machine learning to classify electrocardiogram signal waveforms was successfully improved by using the output current from IL-PRD. Optimizing the electrochemical reaction products of IL-PRD is expected to advance data processing technology in society.

2.
ACS Appl Mater Interfaces ; 14(32): 36890-36901, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35880990

RESUMO

Herein, a physical reservoir device that uses faradaic currents generated by redox reactions of metal ions in ionic liquids was developed. Synthetic time-series data consisting of randomly arranged binary number sequences ("1" and "0") were applied as isosceles-triangular voltage pulses with positive and negative voltage heights, respectively, and the effects of the faradaic current on short-term memory and parity-check task accuracies were verified. The current signal for the first half of the triangular voltage-pulse period, which contained a much higher faradaic current component compared to that of the second half of the triangular voltage-pulse period, enabled higher short-term memory task accuracy. Furthermore, when parity-check tasks were performed using a faradaic current generated by asymmetric triangular voltage-pulse levels of 1 and 0, the parity-check task accuracy was approximately eight times higher than that of the symmetric triangular voltage pulse in terms of the correlation coefficient between the output signal and target data. These results demonstrate the advantage of the faradaic current on both the short-term memory characteristics and nonlinear conversion capabilities and are expected to provide guidance for designing and controlling various physical reservoir devices that utilize electrochemical reactions.

3.
Sci Rep ; 12(1): 6958, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484156

RESUMO

A physical reservoir device with tunable transient dynamics is strongly required to process time-series data with various timescales generated in the edge region. In this study, we proposed using the dielectric relaxation at an electrode-ionic liquid (IL) interface as the physical reservoir by making the most of designable physicochemical properties of ILs. The transient dynamics of a Au/IL/Au reservoir device were characterized as a function of the alkyl chain length of cations in the IL (1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide). By considering a weighted sum of exponentials expressing a superposition of Debye-type relaxations, the transient dynamics were well reconstructed. Although such complex dynamics governed by multiple relaxation processes were observed, each extracted relaxation time scales with a power law as a function of IL's viscosity determined by the alkyl chain length of cations. This indicates that the relaxation processes are characterized by bulk properties of the ILs that obey the widely received Vogel-Fulcher-Tammann law. We demonstrated that the 4-bit time-series signals were transformed into the 16 classifiable data, and the data transformation, which enables to achieve higher accuracy in an image classification task, can be easily optimized according to the features of the input signals by controlling the IL's viscosity.

4.
Nano Lett ; 19(8): 5003-5010, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287324

RESUMO

Herein, we construct three-dimensional (3D) Fe3O4 epitaxial nanowires at a 10 nm length scale on a 3D MgO nanotemplate using an original nanofabrication technique that mainly comprises nanoimprint lithography and inclined thin-film deposition. Despite the high density of inevitable nanoscale defects, the ultrasmall Fe3O4 nanowires exhibit a prominent Verwey transition at about 112 K with a maximum relative change in resistance of 9.5, which is 6 times larger than that of the thin-film configuration. Numerous measurements on a large number of Fe3O4 nanowires grown concurrently on the same 3D MgO nanotemplate reveal a dramatic difference in their electrical transport property with the presence/absence of the Verwey transition. A comparative study of Fe3O4 wires of increasing volume and a thin film reveals that a profound change in the Verwey transition is observed only for wires with a volume on the order of 10 nm3. Moreover, a significant decrease in the sharpness of the resistance jump and the transition temperature of the Verwey response is noticed with an increasing volume of Fe3O4. This indicates the potency of the 3D nanofabrication technique in controlling nanoscale defects, which is further reconfirmed through magnetoresistance measurement. A feature of the magnetoresistance curve identifies the antiphase boundaries as a major source of defects. The occurrence of the smallest magnetoresistance in the ultrasmall nanowire with the highest Verwey transition temperature and resistance change ratio proves that 3D isotropic spatial confinement into a length scale comparable to the average spacing between two antiphase boundaries enables the favorable control over nanoscale defects. A simple statistical model satisfactorily illustrates the dependence of electrical transport properties on the volume of Fe3O4 from the macroscale down to the nanoscale. Finally, an ultrasmall nanowire with a low defect concentration allows the estimation of the true coherence length of the fundamental quasiparticle, the trimeron, responsible for the Verwey transition.

5.
Sci Rep ; 6: 34961, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725705

RESUMO

Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field.

6.
ACS Appl Mater Interfaces ; 8(3): 2054-60, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26734776

RESUMO

Exploring the various applications of conjugated polymers requires systematic studies of their physical properties as a function of the doping density, which, consequently, calls for precise control of their doping density. In this study, we report a novel solid-state photoinduced charge-transfer reaction that dedopes highly conductive polyelectrolyte complexes such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Varying the UV-irradiation time of this material allows the carrier density inside the film to be precisely controlled over more than 3 orders of magnitude. We extract the carrier density, carrier mobility, and Seebeck coefficient at different doping levels to obtain a clear image of carrier-transport mechanisms. This approach not only leads to a better understanding of the physical properties of the conducting polymer but also is useful for developing applications requiring patterned, large-area conducting polymers.

7.
Materials (Basel) ; 8(2): 732-750, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28787968

RESUMO

The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

8.
ACS Appl Mater Interfaces ; 5(24): 12869-75, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24274822

RESUMO

We developed a procedure for the fabrication of sub 1 nm gap Au electrodes via electromigration. Self-aligned nanogap formation was achieved by applying a bias voltage, which causes electromigration during metal evaporation. We also demonstrated the application of this method for the formation of nanogaps as small as 1 nm in width, and we found that the gap size can be controlled by changing the magnitude of the applied voltage. On the basis of the electric conductance and surface-enhanced Raman scattering (SERS) measurements, the fabricated gap size was estimated to be nearly equal to the molecular length of 1,4-benzenedithiol (BDT). Compared with existing electromigration methods, the new method provides two advantages: the process currents are clearly suppressed and parallel or large area production is possible. This simple method for the fabrication of a sub 1 nm gap electrode is useful for single-molecule-sized electronics and opens the door to future research on integrated sub 1 nm sized nanogap devices.

9.
Adv Mater ; 25(20): 2831-6, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23606373

RESUMO

Adding ethylene glycol (EG) to a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution improves the crystallinity of the PEDOT and the ordering of the PEDOT nanocrystals in solid films. The carrier-mobility enhancement is confirmed by using ion-gel transistors combined with in situ UV-vis-NIR spectroscopy.


Assuntos
Poliestirenos/química , Solventes/química , Tiofenos/química , Teste de Materiais , Conformação Molecular , Viscosidade
10.
ACS Appl Mater Interfaces ; 4(10): 5542-6, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23054205

RESUMO

A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.


Assuntos
Gases/química , Nanofios/química , Cristalização , Eletrodos , Eletrônica , Hidrogênio/química , Oxigênio/química , Platina/química
12.
Nano Lett ; 9(4): 1497-500, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19243112

RESUMO

We report a rapid and scalable method for the separation of metallic and semiconducting single-wall carbon nanotubes (SWCNTs); the separation is performed by the selective adsorption of semiconducting SWCNTs on agarose gel. The most effective separation was realized by a simple procedure in which a piece of gel containing SWCNTs and sodium dodecyl sulfate was frozen, thawed, and squeezed. This process affords a solution containing 70% pure metallic SWCNTs and leaves a gel containing 95% pure semiconducting SWCNTs. Field-effect transistors constructed from the separated semiconducting SWCNTs have been demonstrated to function without any electrical breakdown.

13.
J Am Chem Soc ; 128(42): 13720-6, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17044699

RESUMO

For obtaining molecular devices using metal-molecule-metal junctions, it is necessary to fabricate a steady conductive bridge-structure; that is stable chemical bonds need to be established from a single conductive molecule to two facing electrodes. In the present paper, we show that the steadiness of a conductive bridge-structure depends on the molecular structure of the bridge molecule for nanogap junctions using three types of modified oligo(phenylene vinylene)s (OPVs): alpha,omega-bis(thioacetate) oligo(phenylene vinylene) (OPV1), alpha,omega-bis(methylthioacetate) oligo(phenylene vinylene) (OPV2), and OPV2 consisting of ethoxy side chains (OPV3). We examined the change in resistance between the molecule-bridged junction and a bare junction in each of the experimental Au-OPV-Au junctions to confirm whether molecules formed steady bridges. Herein, the outcomes of whether molecules formed steady bridges were defined in terms of three types of result; successful, possible and failure. We define the ratio of the number of successful junctions to the total number of experimental junctions as successful rate. A 60% successful rate for OPV3 was higher than for the other two molecules whose successful rates were estimated to be approximately 10%. We propose that conjugated molecules consisting of methylthioacetate termini and short alkoxy side chains are well suited for fabricating a steady conductive bridge-structure between two facing electrodes.

14.
Nanotechnology ; 17(22): 5669-74, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727340

RESUMO

In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...