Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Eng Manag ; 70(8): 2931-2943, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37954189

RESUMO

Hospitals and other healthcare settings use various simulation methods to improve their operations, management, and training. The COVID-19 pandemic, with the resulting necessity for rapid and remote assessment, has highlighted the critical role of modeling and simulation in healthcare, particularly distributed simulation (DS). DS enables integration of heterogeneous simulations to further increase the usability and effectiveness of individual simulations. This article presents a DS system that integrates two different simulations developed for a hospital intensive care unit (ICU) ward dedicated to COVID-19 patients. AnyLogic has been used to develop a simulation model of the ICU ward using agent-based and discrete event modeling methods. This simulation depicts and measures physical contacts between healthcare providers and patients. The Unity platform has been utilized to develop a virtual reality simulation of the ICU environment and operations. The high-level architecture, an IEEE standard for DS, has been used to build a cloud-based DS system by integrating and synchronizing the two simulation platforms. While enhancing the capabilities of both simulations, the DS system can be used for training purposes and assessment of different managerial and operational decisions to minimize contacts and disease transmission in the ICU ward by enabling data exchange between the two simulations.

2.
Trop Dis Travel Med Vaccines ; 8(1): 19, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045430

RESUMO

BACKGROUND: Most mass gathering events have been suspended due to the SARS-CoV-2 pandemic. However, with vaccination rollout, whether and how to organize some of these mass gathering events arises as part of the pandemic recovery discussions, and this calls for decision support tools. The Hajj, one of the world's largest religious gatherings, was substantively scaled down in 2020 and 2021 and it is still unclear how it will take place in 2022 and subsequent years. Simulating disease transmission dynamics during the Hajj season under different conditions can provide some insights for better decision-making. Most disease risk assessment models require data on the number and nature of possible close contacts between individuals. METHODS: We sought to use integrated agent-based modeling and discrete events simulation techniques to capture risky contacts among the pilgrims and assess different scenarios in one of the Hajj major sites, namely Masjid-Al-Haram. RESULTS: The simulation results showed that a plethora of risky contacts may occur during the rituals. Also, as the total number of pilgrims increases at each site, the number of risky contacts increases, and physical distancing measures may be challenging to maintain beyond a certain number of pilgrims in the site. CONCLUSIONS: This study presented a simulation tool that can be relevant for the risk assessment of a variety of (respiratory) infectious diseases, in addition to COVID-19 in the Hajj season. This tool can be expanded to include other contributing elements of disease transmission to quantify the risk of the mass gathering events.

3.
PLoS One ; 16(11): e0259970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797862

RESUMO

The COVID-19 pandemic has been particularly threatening to patients with end-stage kidney disease (ESKD) on intermittent hemodialysis and their care providers. Hemodialysis patients who receive life-sustaining medical therapy in healthcare settings, face unique challenges as they need to be at a dialysis unit three or more times a week, where they are confined to specific settings and tended to by dialysis nurses and staff with physical interaction and in close proximity. Despite the importance and critical situation of the dialysis units, modelling studies of the SARS-CoV-2 spread in these settings are very limited. In this paper, we have used a combination of discrete event and agent-based simulation models, to study the operations of a typical large dialysis unit and generate contact matrices to examine outbreak scenarios. We present the details of the contact matrix generation process and demonstrate how the simulation calculates a micro-scale contact matrix comprising the number and duration of contacts at a micro-scale time step. We have used the contacts matrix in an agent-based model to predict disease transmission under different scenarios. The results show that micro-simulation can be used to estimate contact matrices, which can be used effectively for disease modelling in dialysis and similar settings.


Assuntos
COVID-19/transmissão , Busca de Comunicante/estatística & dados numéricos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Unidades Hospitalares de Hemodiálise/estatística & dados numéricos , Simulação por Computador , Humanos , Modelos Estatísticos
4.
Health Technol (Berl) ; 11(6): 1359-1368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631358

RESUMO

Drive-through clinics have previously been utilized in vaccination efforts and are now being more widely adopted for COVID-19 vaccination in different parts of the world by offering many advantages including utilizing existing infrastructure, large daily throughput and enforcing social distancing by default. Successful, effective, and efficient drive-through facilities require a suitable site and keen focus on layout and process design. To demonstrate the role that high fidelity computer simulation can play in planning and design of drive-through mass vaccination clinics, we used multiple integrated discrete event simulation (DES) and agent-based modelling methods. This method using AnyLogic simulation software to aid in planning, design, and implementation of one of the largest and most successful early COVID-19 mass vaccination clinics operated by UCHealth in Denver, Colorado. Simulations proved to be helpful in aiding the optimization of UCHealth drive through mass vaccination clinic design and operations by exposing potential bottlenecks, overflows, and queueing, and clarifying the necessary number of supporting staff. Simulation results informed the target number of vaccinations and necessary processing times for different drive through station set ups and clinic formats. We found that modern simulation tools with advanced visual and analytical capabilities to be very useful for effective planning, design, and operations management of mass vaccination facilities.

5.
Vaccines (Basel) ; 9(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696167

RESUMO

The understanding of the public response to COVID-19 vaccines is the key success factor to control the COVID-19 pandemic. To understand the public response, there is a need to explore public opinion. Traditional surveys are expensive and time-consuming, address limited health topics, and obtain small-scale data. Twitter can provide a great opportunity to understand public opinion regarding COVID-19 vaccines. The current study proposes an approach using computational and human coding methods to collect and analyze a large number of tweets to provide a wider perspective on the COVID-19 vaccine. This study identifies the sentiment of tweets using a machine learning rule-based approach, discovers major topics, explores temporal trend and compares topics of negative and non-negative tweets using statistical tests, and discloses top topics of tweets having negative and non-negative sentiment. Our findings show that the negative sentiment regarding the COVID-19 vaccine had a decreasing trend between November 2020 and February 2021. We found Twitter users have discussed a wide range of topics from vaccination sites to the 2020 U.S. election between November 2020 and February 2021. The findings show that there was a significant difference between tweets having negative and non-negative sentiment regarding the weight of most topics. Our results also indicate that the negative and non-negative tweets had different topic priorities and focuses. This research illustrates that Twitter data can be used to explore public opinion regarding the COVID-19 vaccine.

6.
BMC Public Health ; 21(1): 125, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33430832

RESUMO

BACKGROUND: School testing for SARS-CoV-2 infection has become an important policy and planning issue as schools were reopened after the summer season and as the COVID-19 pandemic continues. Decisions to test or not to test and, if testing, how many tests, how often and for how long, are complex decisions that need to be taken under uncertainty and conflicting pressures from various stakeholders. METHOD: We have developed an agent-based model and simulation tool that can be used to analyze the outcomes and effectiveness of different testing strategies and scenarios in schools with various number of classrooms and class sizes. We have applied a modified version of a standard SEIR disease transmission model that includes symptomatic and asymptomatic infectious populations, and that incorporates feasible public health measures. We also incorporated a pre-symptomatic phase for symptomatic cases. Every day, a random number of students in each class are tested. If they tested positive, they are placed in self-isolation at home when the test results are provided. Last but not least, we have included options to allow for full testing or complete self-isolation of a classroom with a positive case. RESULTS: We present sample simulation results for parameter values based on schools and disease related information, in the Province of Ontario, Canada. The findings show that testing can be an effective method in controlling the SARS-CoV-2 infection in schools if taken frequently, with expedited test results and self-isolation of infected students at home. CONCLUSIONS: Our findings show that while testing cannot eliminate the risk and has its own challenges, it can significantly control outbreaks when combined with other measures, such as masks and other protective measures.


Assuntos
Teste para COVID-19 , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Políticas , Instituições Acadêmicas , COVID-19/epidemiologia , Simulação por Computador , Humanos , Ontário/epidemiologia
7.
Healthcare (Basel) ; 8(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182336

RESUMO

Several research and development teams around the world are working towards COVID-19 vaccines. As vaccines are expected to be developed and produced, preparedness and planning for mass vaccination and immunization will become an important aspect of the pandemic management. Mass vaccination has been used by public health agencies in the past and is being proposed as a viable option for COVID-19 immunization. To be able to rapidly and safely immunize a large number of people against SARS-CoV-2, different mass vaccination options are available. Drive-through facilities have been successfully used in the past for immunization against other diseases and for testing during COVID-19. In this paper we introduce a drive-through vaccination simulation tool that can be used to enhance the planning, design, operation, and feasibility and effectiveness assessment of such facilities. The simulation tool is a hybrid model that integrates discrete event and agent-based modeling techniques. The simulation outputs visually and numerically show the average processing and waiting times and the number of cars and people that can be served (throughput values) under different numbers of staff, service lanes, screening, registration, immunization, and recovery times.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33396526

RESUMO

Planning for mass vaccination against SARS-Cov-2 is ongoing in many countries considering that vaccine will be available for the general public in the near future. Rapid mass vaccination while a pandemic is ongoing requires the use of traditional and new temporary vaccination clinics. Use of drive-through has been suggested as one of the possible effective temporary mass vaccinations among other methods. In this study, we present a machine learning model that has been developed based on a big dataset derived from 125K runs of a drive-through mass vaccination simulation tool. The results show that the model is able to reasonably well predict the key outputs of the simulation tool. Therefore, the model has been turned to an online application that can help mass vaccination planners to assess the outcomes of different types of drive-through mass vaccination facilities much faster.


Assuntos
Inteligência Artificial , Vacinação em Massa/organização & administração , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...