Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(12): 2667-2678, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499235

RESUMO

Environmental pollution is one of the most important problems that human beings face. Today, nanotechnology has played an important role in green chemistry and the use of nanoparticles in the removal of environmental pollutants is one of the newest methods of removing pollutants in the world. So, in this study, Nickel oxide nanoparticles (NiO NPs) of this work were successfully synthesized via a green method by the usage of nickel nitrate hexahydrate as the source of metal and Biebersteinia multifida extract as the stabilizing agent throughout different annealing temperatures. The physicochemical properties of the obtained NiO NPs were characterized through the application of scanning electron microscopy (SEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), ultraviolet visible (UV-vis), and Raman analysis. According to the results of SEM and PXRD, the prepared product contained a satisfying distribution and very fine cubic structure with minimal accumulation. The average crystal size of prepared nanoparticles was obtained 54-58 nm. The energy band gap of synthesized NiO NPs was calculated 3-3.7 using Tauc equation. The photocatalytic performance of NiO NPs was investigated under visible light through the decolourization reaction of acid orange 7 (AO7) dye in aqueous solution. Being composed at 300 °C of annealing temperature, these nanoparticles exhibited excellent adsorption and photocatalytic activity (90.2%) toward AO7 dye. Therefore, it can be indicated that the synthesized NiO NPs demonstrated an excellent dispersion in dye solution, as well as considerable photocatalytic activity.


Assuntos
Compostos Azo/metabolismo , Benzenossulfonatos/metabolismo , Luz , Nanopartículas Metálicas/química , Níquel/metabolismo , Processos Fotoquímicos , Catálise
2.
Bioprocess Biosyst Eng ; 44(9): 1891-1899, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33891183

RESUMO

Nanomaterials, as an active ingredient, have been widely deployed in various science and technological applications with zinc and titanium oxides nanoparticles being commonly applied in sunscreens. On similar lines, cerium oxide nanoparticles (CeO2-NPs) were synthesized using Musa sapientum peel extract, to investigate its cytotoxic effects, UV protection and photocatalytic activity. The synthesized nanoparticles were identified through Raman, Powder X-ray Diffraction (PXRD), Fourier-Transform Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive Spectroscopy (EDX). FESEM results showed that the size of synthesized nanoparticles is in the range 4-13 nm. Their cytotoxic activity revealed a non-toxic behavior in concentrations below 500 µg/mL on lung (A549) cell lines. The Sun protection factor (SPF) was estimated approximately ~ 40 for synthesized CeO2-NPs. The survey of photocatalytic activity showed that synthesized nanoparticles can remove 81.7% of AO7 in 180 min under visible light.


Assuntos
Cério , Química Verde , Musa/química , Nanopartículas/química , Processos Fotoquímicos , Protetores Solares , Raios Ultravioleta/efeitos adversos , Células A549 , Catálise , Cério/química , Cério/farmacologia , Frutas/química , Humanos , Protetores Solares/síntese química , Protetores Solares/química , Protetores Solares/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...