Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; : e034492, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028040

RESUMO

BACKGROUND: Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS: Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS: We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.

2.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724421

RESUMO

Ty1 mobile DNA element is the most abundant and mutagenic retrotransposon present in the genome of the budding yeast Saccharomyces cerevisiae. Protein regulator of Ty1 transposition 105 (Rtt105) associates with large subunit of RPA and facilitates its loading onto a single-stranded DNA at replication forks. Here, we dissect the role of RTT105 in the maintenance of genome stability under normal conditions and upon various replication stresses through multiple genetic analyses. RTT105 is essential for viability in cells experiencing replication problems and in cells lacking functional S-phase checkpoints and DNA repair pathways involving homologous recombination. Our genetic analyses also indicate that RTT105 is crucial when cohesion is affected and is required for the establishment of normal heterochromatic structures. Moreover, RTT105 plays a role in telomere maintenance as its function is important for the telomere elongation phenotype resulting from the Est1 tethering to telomeres. Genetic analyses indicate that rtt105Δ affects the growth of several rfa1 mutants but does not aggravate their telomere length defects. Analysis of the phenotypes of rtt105Δ cells expressing NLS-Rfa1 fusion protein reveals that RTT105 safeguards genome stability through its role in RPA nuclear import but also by directly affecting RPA function in genome stability maintenance during replication.


Assuntos
Instabilidade Genômica , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Replicação do DNA , Genoma Fúngico , Recombinação Homóloga , Sinais de Localização Nuclear , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero
3.
J Thromb Haemost ; 18(5): 1009-1019, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020753

RESUMO

Morbidity and mortality from venous thromboembolism (VTE), which refers to deep vein thrombosis and pulmonary embolism, have a substantial effect on the global burden of disease. The field of venous thrombosis research has been dramatically changed over the past 10 years with the improvement of animal models that shed some light on the interaction between inflammation and thrombosis. Important recent advances provided evidence of the implication of the innate immune system in venous thrombosis. In this review, we highlighted the cytokines and chemokines that regulate mechanisms of thrombus formation and resolution. Cytokines are pleiotropic, redundant, and multifunctional endogenous mediators orchestrating the inflammatory responses leading to thrombus formation or resolution. The use of experimental models has revealed the pro-thrombotic activity of some cytokines including interferon-γ, interleukin (IL)-6, chemokine ligand 2, IL-17A, IL-9, IL-1ß, and transforming growth factor-ß. Other cytokines such as IL-10, tumor necrosis factor-α, and IL-8 appear to promote thrombus resolution in late phase of venous thromboembolism. The purpose of this review is to bring together the current knowledge regarding the cytokines and chemokines that have been involved in thrombosis formation and resolution. We postulate that an imbalance between pro-thrombotic and anti-thrombotic cytokines/chemokines may be involved in the pathophysiology of VTE. However, in-depth basic and clinical research in venous thrombosis is still require to fully understand the precise mechanism of action of these cytokines.


Assuntos
Embolia Pulmonar , Tromboembolia Venosa , Trombose Venosa , Animais , Quimiocinas , Citocinas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...