Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Epileptic Disord ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943530

RESUMO

Pupillary changes can be an important semiologic feature in focal epilepsy. Though the subcortical networks involving pupillomotor function have been described, cortical generators of pupillary dilation and constriction in humans are not well known. In this report, we describe a case of pupillary constriction occurring during seizures in a patient with drug resistant focal epilepsy. On stereoelectroencephalography, onset was noted within the posterior segment of the right intraparietal sulcus and direct cortical electrical stimulation of these electrode contacts reproduced pupillary constriction associated with habitual seizures. This is the first case report to describe ictal pupillary constriction during SEEG with confirmation of the cortical localization by direct cortical electrical stimulation. The posterior segment of the right intraparietal sulcus localization of pupillary constriction may aid in surgical evaluation patients with drug resistant focal epilepsy.

2.
Epilepsia ; 65(6): 1631-1643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511905

RESUMO

OBJECTIVE: We aim to improve focal cortical dysplasia (FCD) detection by combining high-resolution, three-dimensional (3D) magnetic resonance fingerprinting (MRF) with voxel-based morphometric magnetic resonance imaging (MRI) analysis. METHODS: We included 37 patients with pharmacoresistant focal epilepsy and FCD (10 IIa, 15 IIb, 10 mild Malformation of Cortical Development [mMCD], and 2 mMCD with oligodendroglial hyperplasia and epilepsy [MOGHE]). Fifty-nine healthy controls (HCs) were also included. 3D lesion labels were manually created. Whole-brain MRF scans were obtained with 1 mm3 isotropic resolution, from which quantitative T1 and T2 maps were reconstructed. Voxel-based MRI postprocessing, implemented with the morphometric analysis program (MAP18), was performed for FCD detection using clinical T1w images, outputting clusters with voxel-wise lesion probabilities. Average MRF T1 and T2 were calculated in each cluster from MAP18 output for gray matter (GM) and white matter (WM) separately. Normalized MRF T1 and T2 were calculated by z-scores using HCs. Clusters that overlapped with the lesion labels were considered true positives (TPs); clusters with no overlap were considered false positives (FPs). Two-sample t-tests were performed to compare MRF measures between TP/FP clusters. A neural network model was trained using MRF values and cluster volume to distinguish TP/FP clusters. Ten-fold cross-validation was used to evaluate model performance at the cluster level. Leave-one-patient-out cross-validation was used to evaluate performance at the patient level. RESULTS: MRF metrics were significantly higher in TP than FP clusters, including GM T1, normalized WM T1, and normalized WM T2. The neural network model with normalized MRF measures and cluster volume as input achieved mean area under the curve (AUC) of .83, sensitivity of 82.1%, and specificity of 71.7%. This model showed superior performance over direct thresholding of MAP18 FCD probability map at both the cluster and patient levels, eliminating ≥75% FP clusters in 30% of patients and ≥50% of FP clusters in 91% of patients. SIGNIFICANCE: This pilot study suggests the efficacy of MRF for reducing FPs in FCD detection, due to its quantitative values reflecting in vivo pathological changes. © 2024 International League Against Epilepsy.


Assuntos
Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto Jovem , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/patologia , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Imageamento Tridimensional/métodos , Criança , Reações Falso-Positivas , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Processamento de Imagem Assistida por Computador/métodos , Displasia Cortical Focal
3.
Clin Neurophysiol ; 161: 80-92, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452427

RESUMO

OBJECTIVE: Ictal Single Photon Emission Computed Tomography (SPECT) and stereo-electroencephalography (SEEG) are diagnostic techniques used for the management of patients with drug-resistant focal epilepsies. While hyperperfusion patterns in ictal SPECT studies reveal seizure onset and propagation pathways, the role of ictal hypoperfusion remains poorly understood. The goal of this study was to systematically characterize the spatio-temporal information flow dynamics between differently perfused brain regions using stereo-EEG recordings. METHODS: We identified seizure-free patients after resective epilepsy surgery who had prior ictal SPECT and SEEG investigations. We estimated directional connectivity between the epileptogenic-zone (EZ), non-resected areas of hyperperfusion, hypoperfusion, and baseline perfusion during the interictal, preictal, ictal, and postictal periods. RESULTS: Compared to the background, we noted significant information flow (1) during the preictal period from the EZ to the baseline and hyperperfused regions, (2) during the ictal onset from the EZ to all three regions, and (3) during the period of seizure evolution from the area of hypoperfusion to all three regions. CONCLUSIONS: Hypoperfused brain regions were found to indirectly interact with the EZ during the ictal period. SIGNIFICANCE: Our unique study, combining intracranial electrophysiology and perfusion imaging, presents compelling evidence of dynamic changes in directional connectivity between brain regions during the transition from interictal to ictal states.


Assuntos
Eletroencefalografia , Convulsões , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Masculino , Feminino , Adulto , Convulsões/fisiopatologia , Convulsões/diagnóstico por imagem , Eletroencefalografia/métodos , Adolescente , Adulto Jovem , Eletrocorticografia/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Criança , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia
4.
Brain Commun ; 6(2): fcae090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524155

RESUMO

Understanding the clinical characteristics and medical treatment of individuals affected by genetic epilepsies is instrumental in guiding selection for genetic testing, defining the phenotype range of these rare disorders, optimizing patient care pathways and pinpointing unaddressed medical need by quantifying healthcare resource utilization. To date, a matched longitudinal cohort study encompassing the entire spectrum of clinical characteristics and medical treatment from childhood through adolescence has not been performed. We identified individuals with genetic and non-genetic epilepsies and onset at ages 0-5 years by linkage across the Cleveland Clinic Health System. We used natural language processing to extract medical terms and procedures from longitudinal electronic health records and tested for cross-sectional and temporal associations with genetic epilepsy. We implemented a two-stage design: in the discovery cohort, individuals were stratified as being 'likely genetic' or 'non-genetic' by a natural language processing algorithm, and controls did not receive genetic testing. The validation cohort consisted of cases with genetic epilepsy confirmed by manual chart review and an independent set of controls who received negative genetic testing. The discovery and validation cohorts consisted of 503 and 344 individuals with genetic epilepsy and matched controls, respectively. The median age at the first encounter was 0.1 years and 7.9 years at the last encounter, and the mean duration of follow-up was 8.2 years. We extracted 188,295 Unified Medical Language System annotations for statistical analysis across 9659 encounters. Individuals with genetic epilepsy received an earlier epilepsy diagnosis and had more frequent and complex encounters with the healthcare system. Notably, the highest enrichment of encounters compared with the non-genetic groups was found during the transition from paediatric to adult care. Our computational approach could validate established comorbidities of genetic epilepsies, such as behavioural abnormality and intellectual disability. We also revealed novel associations for genitourinary abnormalities (odds ratio 1.91, 95% confidence interval: 1.66-2.20, P = 6.16 × 10-19) linked to a spectrum of underrecognized epilepsy-associated genetic disorders. This case-control study leveraged real-world data to identify novel features associated with the likelihood of a genetic aetiology and quantified the healthcare utilization of genetic epilepsies compared with matched controls. Our results strongly recommend early genetic testing to stratify individuals into specialized care paths, thus improving the clinical management of people with genetic epilepsies.

5.
Brain Commun ; 6(1): fcae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390255

RESUMO

Responsive neurostimulation is a closed-loop neuromodulation therapy for drug resistant focal epilepsy. Responsive neurostimulation electrodes are placed near ictal onset zones so as to enable detection of epileptiform activity and deliver electrical stimulation. There is no standard approach for determining the optimal placement of responsive neurostimulation electrodes. Clinicians make this determination based on presurgical tests, such as MRI, EEG, magnetoencephalography, ictal single-photon emission computed tomography and intracranial EEG. Currently functional connectivity measures are not being used in determining the placement of responsive neurostimulation electrodes. Cortico-cortical evoked potentials are a measure of effective functional connectivity. Cortico-cortical evoked potentials are generated by direct single-pulse electrical stimulation and can be used to investigate cortico-cortical connections in vivo. We hypothesized that the presence of high amplitude cortico-cortical evoked potentials, recorded during intracranial EEG monitoring, near the eventual responsive neurostimulation contact sites is predictive of better outcomes from its therapy. We retrospectively reviewed 12 patients in whom cortico-cortical evoked potentials were obtained during stereoelectroencephalography evaluation and subsequently underwent responsive neurostimulation therapy. We studied the relationship between cortico-cortical evoked potentials, the eventual responsive neurostimulation electrode locations and seizure reduction. Directional connectivity indicated by cortico-cortical evoked potentials can categorize stereoelectroencephalography electrodes as either receiver nodes/in-degree (an area of greater inward connectivity) or projection nodes/out-degree (greater outward connectivity). The follow-up period for seizure reduction ranged from 1.3-4.8 years (median 2.7) after responsive neurostimulation therapy started. Stereoelectroencephalography electrodes closest to the eventual responsive neurostimulation contact site tended to show larger in-degree cortico-cortical evoked potentials, especially for the early latency cortico-cortical evoked potentials period (10-60 ms period) in six out of 12 patients. Stereoelectroencephalography electrodes closest to the responsive neurostimulation contacts (≤5 mm) also had greater significant out-degree in the early cortico-cortical evoked potentials latency period than those further away (≥10 mm) (P < 0.05). Additionally, significant correlation was noted between in-degree cortico-cortical evoked potentials and greater seizure reduction with responsive neurostimulation therapy at its most effective period (P < 0.05). These findings suggest that functional connectivity determined by cortico-cortical evoked potentials may provide additional information that could help guide the optimal placement of responsive neurostimulation electrodes.

6.
Epilepsy Behav ; 153: 109692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394790

RESUMO

OBJECTIVE: Demographic and disease factors are associated with cognitive deficits and postoperative cognitive declines in adults with pharmacoresistant temporal lobe epilepsy (TLE), but the role of genetic factors in cognition in TLE is not well understood. Polygenic scores (PGS) for neurological and neuropsychiatric disorders and IQ have been associated with cognition in patient and healthy populations. In this exploratory study, we examined the relationship between PGS for Alzheimer's disease (AD), depression, and IQ and cognitive outcomes in adults with TLE. METHODS: 202 adults with pharmacoresistant TLE had genotyping and completed neuropsychological evaluations as part of a presurgical work-up. A subset (n = 116) underwent temporal lobe resection and returned for postoperative cognitive testing. Logistic regression was used to determine if PGS for AD, depression, and IQ predicted baseline domain-specific cognitive function and cognitive phenotypes as well as postoperative language and memory decline. RESULTS: No significant findings survived correction for multiple comparisons. Prior to correction, higher PGS for AD and depression (i.e., increased genetic risk for the disorder), but lower PGS for IQ (i.e., decreased genetic likelihood of high IQ) appeared possibly associated with baseline cognitive impairment in TLE. In comparison, higher PGS for AD and IQ appeared as possible risk factors for cognitive decline following temporal lobectomy, while the possible relationship between PGS for depression and post-operative cognitive outcome was mixed. SIGNIFICANCE: We did not observe any relationships of large effect between PGS and cognitive function or postsurgical outcome; however, results highlight several promising trends in the data that warrant future investigation in larger samples better powered to detect small genetic effects.


Assuntos
Doença de Alzheimer , Epilepsia do Lobo Temporal , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Cognição , Lobo Temporal/cirurgia , Testes Neuropsicológicos , Idioma
7.
Brain Commun ; 5(5): fcad251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881482

RESUMO

Approximately 50% of individuals who undergo resective epilepsy surgery experience seizure recurrence. The heterogenous post-operative outcomes are not fully explained by clinical, imaging and electrophysiological variables. We hypothesized that molecular features may be useful in understanding surgical response, and that individuals with epilepsy can be classified into molecular subtypes that are associated with seizure freedom or recurrence after surgical resection. Pre-operative blood samples, brain tissue and post-operative seizure outcomes were collected from a cohort of 40 individuals with temporal lobe epilepsy, 23 of whom experienced post-operative seizure recurrence. Messenger RNA and microRNA extracted from the blood and tissue samples were sequenced. The messenger RNA and microRNA expression levels from the blood and brain were each subjected to a novel clustering approach combined with multiple logistic regression to separate individuals into genetic clusters that identify novel subtypes associated with post-operative seizure outcomes. We then compared the microRNAs and messenger RNAs from patient blood and brain tissue that were significantly associated with each subtype to identify signatures that are similarly over- or under-represented for an outcome and more likely to represent endophenotypes with common molecular aetiology. These target microRNAs and messenger RNAs were further characterized by pathway analysis to assess their functional role in epilepsy. Using blood-derived microRNA and messenger RNA expression levels, we identified two subtypes of epilepsy that were significantly associated with seizure recurrence (clusters A1 and B4) (adjusted P < 0.20). A total of 551 microRNAs and 2486 messenger RNAs were associated with clusters A1 and B4, respectively (adjusted P < 0.05). Clustering of brain-tissue messenger RNA expression levels revealed an additional subtype (C2) associated with seizure recurrence that had high overlap of dysregulated messenger RNA transcripts with cluster B4. Clusters A1, B4 and C2 also shared significant overlap of subjects, which altogether suggests a coordinated mechanism by which microRNA and messenger RNA transcripts may be related to seizure recurrence. Epileptic subtypes A1, B4 and C2 reveal both known and novel microRNA and messenger RNA targets in seizure recurrence. Furthermore, targets identified in A1 and B4 are quantifiable in pre-operative blood samples and could potentially serve as biomarkers for surgical resection outcomes.

8.
Epilepsy Behav ; 147: 109369, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619459

RESUMO

OBJECTIVE: To assess the effectiveness and safety/tolerability of perampanel (PER) in people with epilepsy (PWE) treated in everyday clinical practice for focal and generalized seizures, both in the total cohort and by age group. METHODS: The PERMIT Extension study was a pooled analysis of data from PWE included in two large previous clinical practice studies (PERMIT and PROVE). Retention was assessed over 12 months. Effectiveness was assessed based on total seizures and by seizure type (focal and generalized) after 3, 6, and 12 months of PER treatment and at final follow-up (last observation carried forward; "last visit"); assessments included responder rate (≥50% seizure frequency reduction from baseline) and seizure freedom rate (no seizures since at least the previous visit). Safety/tolerability was assessed throughout PER treatment by evaluating adverse events (AEs). All assessments were conducted for the total population and by age category (<12, ≥12 to <18, ≥18 to <65, and ≥65 years at baseline). RESULTS: Full Analysis Set included 6,822 PWE (51.1% female; mean age, 36.9 years; mean duration of epilepsy 21.4 years) with 6,433, 4,648, and 6,233 PWE assessed for retention, effectiveness, and safety/tolerability, respectively. The majority of PWE (81.1%) were aged 18-64 at baseline, with 4.5% aged <12 years, 8.4% aged 12-17 years, and 5.9% aged ≥65 years. In the overall population, retention rates at 3, 6, and 12 months were 88.0%, 77.6%, and 61.4%, respectively; responder rates at 12 months were 58.5% for total seizures, 54.6% for focal seizures, and 77.7% for generalized seizures, and corresponding seizure freedom rates were 23.6%, 19.0%, and 51.3%, respectively. PER was effective regardless of age category, although effectiveness was greatest in PWE aged ≥65 years, for both focal and generalized seizures. In the overall population, the incidence of AEs was 49.2% and the most frequent AEs (≥5% of PWE) were dizziness/vertigo (13.4%), somnolence (8.8%), irritability (7.3%), and behavioral disorders (5.3%); AEs led to treatment discontinuation in 18.3% of PWE over 12 months. The incidence of AEs and the discontinuation rate due to AEs increased with increasing age (55.0% and 23.9%, respectively, in PWE aged ≥65 years). CONCLUSION: In this study, the largest pooled analysis of PER clinical practice data conducted to date, PER was shown to be effective and generally well tolerated when used to treat people with focal or generalized epilepsy in everyday clinical practice, regardless of age category. No new or unexpected side effects emerged following long-term use in the real-world setting.

10.
Acta Neuropathol ; 145(6): 815-827, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36973520

RESUMO

Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.


Assuntos
Epilepsia , Ganglioglioma , Humanos , Epilepsia/patologia , Ganglioglioma/genética , Ganglioglioma/patologia , Mutação/genética , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Genes ras , Sistema de Sinalização das MAP Quinases
11.
Brain ; 146(4): 1342-1356, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36226386

RESUMO

Understanding the exact molecular mechanisms involved in the aetiology of epileptogenic pathologies with or without tumour activity is essential for improving treatment of drug-resistant focal epilepsy. Here, we characterize the landscape of somatic genetic variants in resected brain specimens from 474 individuals with drug-resistant focal epilepsy using deep whole-exome sequencing (>350×) and whole-genome genotyping. Across the exome, we observe a greater number of somatic single-nucleotide variants in low-grade epilepsy-associated tumours (7.92 ± 5.65 single-nucleotide variants) than in brain tissue from malformations of cortical development (6.11 ± 4 single-nucleotide variants) or hippocampal sclerosis (5.1 ± 3.04 single-nucleotide variants). Tumour tissues also had the largest number of likely pathogenic variant carrying cells. low-grade epilepsy-associated tumours had the highest proportion of samples with one or more somatic copy-number variants (24.7%), followed by malformations of cortical development (5.4%) and hippocampal sclerosis (4.1%). Recurring somatic whole chromosome duplications affecting Chromosome 7 (16.8%), chromosome 5 (10.9%), and chromosome 20 (9.9%) were observed among low-grade epilepsy-associated tumours. For germline variant-associated malformations of cortical development genes such as TSC2, DEPDC5 and PTEN, germline single-nucleotide variants were frequently identified within large loss of heterozygosity regions, supporting the recently proposed 'second hit' disease mechanism in these genes. We detect somatic variants in 12 established lesional epilepsy genes and demonstrate exome-wide statistical support for three of these in the aetiology of low-grade epilepsy-associated tumours (e.g. BRAF) and malformations of cortical development (e.g. SLC35A2 and MTOR). We also identify novel significant associations for PTPN11 with low-grade epilepsy-associated tumours and NRAS Q61 mutated protein with a complex malformation of cortical development characterized by polymicrogyria and nodular heterotopia. The variants identified in NRAS are known from cancer studies to lead to hyperactivation of NRAS, which can be targeted pharmacologically. We identify large recurrent 1q21-q44 duplication including AKT3 in association with focal cortical dysplasia type 2a with hyaline astrocytic inclusions, another rare and possibly under-recognized brain lesion. The clinical-genetic analyses showed that the numbers of somatic single-nucleotide variant across the exome and the fraction of affected cells were positively correlated with the age at seizure onset and surgery in individuals with low-grade epilepsy-associated tumours. In summary, our comprehensive genetic screen sheds light on the genome-scale landscape of genetic variants in epileptic brain lesions, informs the design of gene panels for clinical diagnostic screening and guides future directions for clinical implementation of epilepsy surgery genetics.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Epilepsia/patologia , Encéfalo/patologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/metabolismo , Genômica , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Epilepsias Parciais/metabolismo , Nucleotídeos/metabolismo
12.
Epilepsia ; 64(2): 430-442, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507762

RESUMO

OBJECTIVE: We aim to quantify whole-brain tissue-property changes in patients with magnetic resonance imaging (MRI)-negative pharmacoresistant focal epilepsy by three-dimensional (3D) magnetic resonance fingerprinting (MRF). METHODS: We included 30 patients with pharmacoresistant focal epilepsy and negative MRI by official radiology report, as well as 40 age- and gender-matched healthy controls (HCs). MRF scans were obtained with 1 mm3 isotropic resolution. Quantitative T1 and T2 relaxometry maps were reconstructed from MRF and registered to the Montreal Neurological Institute (MNI) space. A two-sample t test was performed in Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) to evaluate significant abnormalities in patients comparing to HCs, with correction by the threshold-free cluster enhancement (TFCE) method. Subgroups analyses were performed for extra-temporal epilepsy/temporal epilepsy (ETLE/TLE), and for those with/without subtle abnormalities detected by morphometric analysis program (MAP), to investigate each subgroup's pattern of MRF changes. Correlation analyses were performed between the mean MRF values in each significant cluster and seizure-related clinical variables. RESULTS: Compared to HCs, patients exhibited significant group-level T1 increase ipsilateral to the epileptic origin, in the mesial temporal gray matter (GM) and white matter (WM), temporal pole GM, orbitofrontal GM, hippocampus, and amygdala, with scattered clusters in the neocortical temporal and insular GM. No significant T2 changes were detected. The ETLE subgroup showed a T1-increase pattern similar to the overall cohort, with additional involvement of the ipsilateral anterior cingulate GM. The subgroup of MAP+ patients also showed a T1-increase pattern similar to the overall cohort, with additional cluster in the ipsilateral lateral orbitofrontal GM. Higher T1 was associated with younger seizure-onset age, longer epilepsy duration, and higher seizure frequency. SIGNIFICANCE: MRF revealed group-level T1 increase in limbic/paralimbic structures ipsilateral to the epileptic origin, in patients with pharmacoresistant focal epilepsy and no apparent lesions on MRI, suggesting that these regions may be commonly affected by seizures in the epileptic brain. The significant association between T1 increase and higher seizure burden may reflect progressive tissue damage.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Convulsões , Epilepsias Parciais/diagnóstico por imagem
13.
Hum Brain Mapp ; 44(4): 1695-1710, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480260

RESUMO

Single-photon emission computed tomography (SPECT) during seizures and magnetoencephalography (MEG) during the interictal state are noninvasive modalities employed in the localization of the epileptogenic zone in patients with drug-resistant focal epilepsy (DRFE). The present study aims to investigate whether there exists a preferentially high MEG functional connectivity (FC) among those regions of the brain that exhibit hyperperfusion or hypoperfusion during seizures. We studied MEG and SPECT data in 30 consecutive DRFE patients who had resective epilepsy surgery. We parcellated each ictal perfusion map into 200 regions of interest (ROIs) and generated ROI time series using source modeling of MEG data. FC between ROIs was quantified using coherence and phase-locking value. We defined a generalized linear model to relate the connectivity of each ROI, ictal perfusion z score, and distance between ROIs. We compared the coefficients relating perfusion z score to FC of each ROI and estimated the connectivity within and between resected and unresected ROIs. We found that perfusion z scores were strongly correlated with the FC of hyper-, and separately, hypoperfused ROIs across patients. High interictal connectivity was observed between hyperperfused brain regions inside and outside the resected area. High connectivity was also observed between regions of ictal hypoperfusion. Importantly, the ictally hypoperfused regions had a low interictal connectivity to regions that became hyperperfused during seizures. We conclude that brain regions exhibiting hyperperfusion during seizures highlight a preferentially connected interictal network, whereas regions of ictal hypoperfusion highlight a separate, discrete and interconnected, interictal network.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Magnetoencefalografia/métodos , Eletroencefalografia/métodos , Convulsões/diagnóstico por imagem , Convulsões/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Encéfalo/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Perfusão , Tomografia Computadorizada de Emissão de Fóton Único , Imageamento por Ressonância Magnética
14.
Clin Neurophysiol ; 145: 108-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443170

RESUMO

OBJECTIVE: The significance of ictal magnetoencephalography (MEG) is not well appreciated. We evaluated the relationships between ictal MEG, MRI, intracranial electroencephalography (ICEEG), surgery and postoperative seizure outcome. METHODS: A total of 45 patients (46 cases) with ictal MEG who underwent epilepsy surgery was included. We examined the localization of each modality, surgical resection area and seizure freedom after surgery. RESULTS: Twenty-one (45.7%) out of 46 cases were seizure-free at more than 6 months follow-up. Median duration of postoperative follow-up was 16.5 months. The patients in whom ictal, interictal single equivalent current dipole (SECD) and MRI lesion localization were completely included in the resection had a higher chance of being seizure-free significantly (p < 0.05). Concordance between ictal and interictal SECD localizations was significantly associated with seizure-freedom. Concordance between MRI lesion and ictal SECD, concordance between ictal ICEEG and ictal and interictal SECD, as well as concordance between ictal ICEEG and MRI lesion were significantly associated with seizure freedom. CONCLUSIONS: Ictal MEG can contribute useful information for delineating the resection area in epilepsy surgery. SIGNIFICANCE: Resection should include ictal, interictal SECDs and MRI lesion localization, when feasible. Concordant ictal and interictal SECDs on MEG can be a favorable predictor of seizure freedom.


Assuntos
Epilepsia , Magnetoencefalografia , Humanos , Eletroencefalografia , Relevância Clínica , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia/patologia , Convulsões/diagnóstico por imagem , Convulsões/cirurgia , Imageamento por Ressonância Magnética
15.
Epilepsia ; 64(1): 103-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281562

RESUMO

OBJECTIVE: This study was undertaken to better understand the long-term palliative and disease-modifying effects of surgical resection beyond seizure freedom, including frequency reduction and both late recurrence and remission, in patients with drug-resistant epilepsy. METHODS: This retrospective database-driven cohort study included all patients with >9 years of follow-up at a single high-volume epilepsy center. We included patients who underwent lobectomy, multilobar resection, or lesionectomies for drug-resistant epilepsy; we excluded patients who underwent hemispherectomies. Our main outcomes were (1) reduction in frequency of disabling seizures (at 6 months, each year up to 9 years postoperatively, and at last follow-up), (2) achievement of seizure remission (>6 months, >1 year, and longest duration), and (3) seizure freedom at last follow-up. RESULTS: We included 251 patients; 234 (93.2%) achieved 6 months and 232 (92.4%) experienced 1 year of seizure freedom. Of these, the average period of seizure freedom was 10.3 years. A total of 182 (72.5%) patients were seizure-free at last follow-up (defined as >1 year without seizures), with a median 11.9 years since remission. For patients not completely seizure-free, the mean seizure frequency reduction at each time point was 76.2%, and ranged from 66.6% to 85.0%. Patients decreased their number of antiseizure medications on average by .58, and 53 (21.2%) patients were on no antiseizure medication at last follow-up. Nearly half (47.1%) of those seizure-free at last follow-up were not seizure-free immediately postoperatively. SIGNIFICANCE: Patients who continue to have seizures after resection often have considerable reductions in seizure frequency, and many are able to achieve seizure freedom in a delayed manner.


Assuntos
Epilepsia Resistente a Medicamentos , Convulsões , Humanos , Estudos de Coortes , Estudos Retrospectivos , Resultado do Tratamento , Convulsões/cirurgia , Convulsões/tratamento farmacológico , Epilepsia Resistente a Medicamentos/cirurgia , Liberdade
16.
Cereb Cortex ; 33(7): 3562-3574, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35945683

RESUMO

Quantitative magnetic resonance (MR) has been used to study cyto- and myelo-architecture of the human brain non-invasively. However, analyzing brain cortex using high-resolution quantitative MR acquisition can be challenging to perform using 3T clinical scanners. MR fingerprinting (MRF) is a highly efficient and clinically feasible quantitative MR technique that simultaneously provides T1 and T2 relaxation maps. Using 3D MRF from 40 healthy subjects (mean age = 25.6 ± 4.3 years) scanned on 3T magnetic resonance imaging, we generated whole-brain gyral-based normative MR relaxation atlases and investigated cortical-region-based T1 and T2 variations. Gender and age dependency of T1 and T2 variations were additionally analyzed. The coefficient of variation of T1 and T2 for each cortical-region was 3.5% and 7.3%, respectively, supporting low variability of MRF measurements across subjects. Significant differences in T1 and T2 were identified among 34 brain regions (P < 0.001), lower in the precentral, postcentral, paracentral lobule, transverse temporal, lateral occipital, and cingulate areas, which contain sensorimotor, auditory, visual, and limbic functions. Significant correlations were identified between age and T1 and T2 values. This study established whole-brain MRF T1 and T2 atlases of healthy subjects using a clinical 3T scanner, which can provide a quantitative and region-specific baseline for future brain studies and pathology detection.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adulto Jovem , Adulto , Lactente , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Voluntários Saudáveis , Processamento de Imagem Assistida por Computador/métodos
17.
Front Pharmacol ; 13: 983233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36515436

RESUMO

Polytherapy with antiseizure medications (ASMs) is often used to control seizures in patients suffering from epilepsy, where about 30% of patients are pharmacoresistant. While drug combinations are intended to be beneficial, the consequence of CYP-dependent drug interactions on apoptotic protein levels and mitochondrial function in the epileptic brain remains unclear. We examined the interactions of ASMs given prior to surgery in surgically resected brain tissues and of three ASMs (lacosamide, LCM; oxcarbazepine, OXC; levetiracetam LEV) in isolated brain cells from patients with drug-resistant epilepsy (n = 23). We divided the patients into groups-those who took combinations of NON-CYP + CYP substrate ASMs, NON-CYP + CYP inducer ASMs, CYP substrate + CYP substrate or CYP substrate + CYP inducer ASMs-to study the 1) pro- and anti-apoptotic protein levels and other apoptotic signaling proteins and levels of reactive oxygen species (reduced glutathione and lipid peroxidation) in brain tissues; 2) cytotoxicity at blood-brain barrier epileptic endothelial cells (EPI-ECs) and subsequent changes in mitochondrial membrane potential in normal neuronal cells, following treatment with LCM + OXC (CYP substrate + CYP inducer) or LCM + LEV (CYP substrate + NON-CYP-substrate) after blood-brain barrier penetration, and 3) apoptotic and mitochondrial protein targets in the cells, pre-and post-CYP3A4 inhibition by ketoconazole and drug treatments. We found an increased BAX (pro-apoptotic)/Bcl-XL (anti-apoptotic) protein ratio in epileptic brain tissue after treatment with CYP substrate + CYP substrate or inducer compared to NON-CYP + CYP substrate or inducer, and subsequently decreased glutathione and elevated lipid peroxidation levels. Further, increased cytotoxicity and Mito-ID levels, indicative of compromised mitochondrial membrane potential, were observed after treatment of LCM + OXC in combination compared to LCM + LEV or these ASMs alone in EPI-ECs, which was attenuated by pre-treatment of CYP inhibitor, ketoconazole. A combination of two CYP-mediated ASMs on EPI-ECs resulted in elevated caspase-3 and cytochrome c with decreased SIRT3 levels and activity, which was rescued by CYP inhibition. Together, the study highlights for the first time that pro- and anti-apoptotic proteins levels are dependent on ASM combinations in epilepsy, modulated via a CYP-mediated mechanism that controls free radicals, cytotoxicity and mitochondrial activity. These findings lead to a better understanding of future drug selection choices offsetting pharmacodynamic CYP-mediated interactions.

18.
Brain Commun ; 4(6): fcac285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419965

RESUMO

Memory dysfunction is prevalent in temporal lobe epilepsy, but little is known about the underlying pathophysiological etiologies. Here, we use spatial quantitation to examine differential expression of targeted proteins and transcripts in four brain regions essential for episodic memory (dentate gyrus, CA3, CA1, neocortex) between temporal lobe epilepsy patients with and without episodic memory impairment. Brain tissues were obtained from dominant temporal lobectomies in 16 adults with pharmacoresistant temporal lobe epilepsy associated with hippocampal sclerosis. Verbal memory tests from routine pre-operative clinical care were used to classify episodic memory as impaired or intact. Digital spatial profiling of a targeted protein panel and the whole transcriptome was performed using tissue sections from the temporal neocortex and hippocampus. We performed differential expression and pathway enrichment analysis between the memory groups within each temporal lobe region. Several proteins associated with neurodegenerative disease were overexpressed in the neocortex of patients with impaired memory, corroborating our prior findings using bulk transcriptomics. Spatial transcriptomics identified numerous differentially expressed transcripts in both neocortical and hippocampal subregions between memory groups, with little overlap across subregions. The strongest molecular signal was observed in the CA3 hippocampal subregion, known to play an essential role in memory encoding. Enrichment analyses revealed BDNF as a central hub in CA3-related networks regulating phenotype-relevant processes such as cognition, memory, long-term potentiation and neuritogenesis (Padj < 0.05). Results suggest memory impairment in temporal lobe epilepsy with hippocampal sclerosis is associated with molecular alterations within temporal lobe subregions that are independent from hippocampal cell loss, demographic variables and disease characteristics. Importantly, each temporal subregion shows a unique molecular signature associated with memory impairment. While many differentially expressed transcripts and proteins in the neocortex have been associated with neurodegenerative disorders/processes, differentially expressed transcripts in hippocampal subregions involve genes associated with neuritogenesis and long-term potentiation, processes essential for new memory formation.

19.
NPJ Genom Med ; 7(1): 69, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446800

RESUMO

Memory dysfunction is prevalent in temporal lobe epilepsy (TLE), but little is known about the underlying molecular etiologies. Single-nucleus RNA sequencing technology was used to examine differences in cellular heterogeneity among left (language-dominant) temporal neocortical tissues from patients with TLE with (n = 4) or without (n = 2) impairment in verbal episodic memory. We observed marked cell heterogeneity between memory phenotypes and identified numerous differentially expressed genes across all brain cell types. The most notable differences were observed in glutamatergic (excitatory) and GABAergic (inhibitory) neurons with an overrepresentation of genes associated with long-term potentiation, long-term depression, and MAPK signaling, processes known to be essential for episodic memory formation.

20.
Epilepsy Behav ; 137(Pt A): 108948, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283290

RESUMO

PURPOSE: Neurosurgery is an effective treatment option for pharmacoresistant epilepsy. Although post-surgical seizure freedom is considered the primary goal of epilepsy surgery, other factors that impact Quality of Life (QOL) are also important to consider, including post-surgical cognitive changes. This study aimed to examine the impact of post-surgical cognitive changes on QOL in the context of seizure outcomes. METHODS: Participants were 196 adults with focal epilepsy who underwent either frontal (n = 27) or temporal (n = 169) lobe resection. Each participant completed pre- and post-surgical neuropsychological evaluations, and cognitive composites were constructed for the following domains: language, attention/processing speed, memory, executive function, and visuospatial skill. The Quality of Life in Epilepsy (QOLIE-10) questionnaire was used to assess QOL. Seizure outcome was determined by seizure status six months post-surgery. RESULTS: Eighty-one percent of patients were seizure-free post-surgery and generally reported improved QOL. While a significant portion of patient's demonstrated declines in language and verbal memory following surgery, only a decline in verbal memory was associated with worse QOL; however, this relationship was no longer significant after controlling for seizure outcome. Instead, reduced post-surgical QOL was primarily observed in those who experienced both seizure recurrence and a decline in executive function. Notably, depression was a significant covariate in all of the models. CONCLUSIONS: The findings from this study improve our ability to counsel patients about the trade-off between cognitive decline and seizure remittance in the greater context of overall QOL. Reassuringly, it appears that QOL is improved regardless of cognitive changes when patients have good seizure outcomes. However, for those that experience a "double hit" (i.e., cognitive decline without seizure remission), post-surgical QOL may be reduced. Changes in depression also appear to play a crucial role in QOL outcomes.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Adulto , Humanos , Qualidade de Vida , Convulsões/cirurgia , Epilepsia/cirurgia , Testes Neuropsicológicos , Cognição , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...