Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1705-1721, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37758174

RESUMO

Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Mapeamento Cromossômico , Flavonoides , 2-Isopropilmalato Sintase , Proteínas de Arabidopsis/genética
2.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36371691

RESUMO

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

3.
Methods Mol Biol ; 2505: 59-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732936

RESUMO

Recent approaches developed in metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) enabled us to assign a part of specialized metabolites in plants. However, the approaches are not good enough for the rest of the metabolites, which are still unknown. To characterize the unknown metabolites, more appropriate and precise approaches need to be developed. Here, a procedure to analyze 15N-labeled and nonlabeled LC-MS/MS data for identification of monoterpene indole alkaloids was developed.


Assuntos
Catharanthus , Catharanthus/metabolismo , Cromatografia Líquida , Análise de Dados , Alcaloides Indólicos/análise , Alcaloides Indólicos/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Espectrometria de Massas em Tandem/métodos
4.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563726

RESUMO

Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of SlIAA9 and SlTAP3 and sldella that do not have the protein-coding gene, SlDELLA, in tomato (cv. Micro-Tom). At 0 day after the flowering (DAF) stage and DAFs after pollination, the sliaa9 mutant demonstrated increased pistil development compared to the other two mutants and wild type (WT). In contrast to WT and the other mutants, the sliaa9 mutant with pollination efficiently stimulated the build-up of auxin and GAs after flowering. Alterations in both transcript and metabolite profiles existed for WT with and without pollination, while the three mutants without pollination demonstrated the comparable metabolomic status of pollinated WT. Network analysis showed key modules linked to photosynthesis, sugar metabolism and cell proliferation. Equivalent modules were noticed in the famous parthenocarpic cultivars 'Severianin', particularly for emasculated samples. Our discovery indicates that controlling the genes and metabolites proffers future breeding policies for tomatoes.


Assuntos
Solanum lycopersicum , Divisão Celular , Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Plant Biotechnol (Tokyo) ; 38(3): 305-310, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782816

RESUMO

Plants release specialized (secondary) metabolites from their roots to communicate with other organisms, including soil microorganisms. The spatial behavior of such metabolites around these roots can help us understand roles for the communication; however, currently, they are unclear because soil-based studies are complex. Here, we established a multimodal metabolomics approach using imaging mass spectrometry (IMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially assign metabolites under laboratory conditions using agar. In a case study using Catharanthus roseus, we showed that 58 nitrogen (N)-containing metabolites are released from the roots into the agar. For the metabolite assignment, we used 15N-labeled and non-labeled LC-MS/MS data, previously reported. Four metabolite ions were identified using authentic standard compounds as derived from monoterpene indole alkaloids (MIAs) such as ajmalicine, catharanthine, serpentine, and yohimbine. An alkaloid network analysis using dot products and spinglass methods characterized five clusters to which the 58 ions belong. The analysis clustered ions from the indolic skeleton-type MIAs to a cluster, suggesting that other communities may represent distinct metabolite groups. For future chemical assignments of the serpentine community, key fragmentation patterns were characterized using the 15N-labeled and non-labeled MS/MS spectra.

6.
Plant Biotechnol (Tokyo) ; 38(3): 311-315, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782817

RESUMO

Spatial metabolomics uses imaging mass spectrometry (IMS) to localize metabolites within tissue section. Here, we performed matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance-IMS (MALDI-FTICR-IMS) to identify the localization of asparaptine A, a naturally occurring inhibitor of angiotensin-converting enzyme, in green spears of asparagus (Asparagus officinalis). Spatial metabolome data were acquired in an untargeted manner. Segmentation analysis using the data characterized tissue-type-dependent and independent distribution patterns in cross-sections of asparagus spears. Moreover, asparaptine A accumulated at high levels in developing lateral shoot tissues. Quantification of asparaptine A in lateral shoots using liquid chromatography-tandem mass spectrometry (LC-MS/MS) validated the IMS analysis. These results provide valuable information for understanding the function of asparaptine A in asparagus, and identify the lateral shoot as a potential region of interest for multiomics studies to examine gene-to-metabolite associations in the asparaptine A biosynthesis.

7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815339

RESUMO

Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.


Assuntos
Citocininas/metabolismo , Estresse Salino/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiologia , Flavonoides/genética , Flavonoides/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Metabolômica/métodos , Salinidade , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética
8.
Nat Prod Rep ; 38(10): 1729-1759, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668509

RESUMO

Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.


Assuntos
Metabolômica/métodos , Compostos Fitoquímicos/metabolismo , Plantas/metabolismo , Inteligência Artificial , Genoma de Planta , Informática , Aprendizado de Máquina , Espectrometria de Massas , Família Multigênica , Plantas/química
9.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445541

RESUMO

Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Mallotus (Planta)/metabolismo , Metaboloma , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Mallotus (Planta)/genética , Mallotus (Planta)/crescimento & desenvolvimento , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
10.
J Agric Food Chem ; 69(30): 8571-8577, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34269574

RESUMO

The biosynthetic pathway of asparaptine, a naturally occurring inhibitor of angiotensin-converting enzyme (ACE) in vitro, is largely unknown in Asparagus officinalis. To determine which metabolites are involved in the pathway, we performed tandem mass spectrum similarity-based metabolome network analysis using 13C-labeled and non-labeled valine-fed asparagus calluses. We revealed that S-(2-carboxy-n-propyl)-cysteine as an intermediate and two new metabolites as asparaptine analogues, lysine- and histidine-type conjugates, are involved in the pathway. Asparaptine was therefore renamed asparaptine A (arginine type), and the two analogues were named asparaptines B (lysine type) and C (histidine type). Oral feeding of asparaptine A to a hypertensive mouse breed showed that this metabolite lowers both the blood pressure and heart rate within 2 h and the effect of asparaptine A wears off after 2 days. These results suggest that asparaptine A may not only have effects as an ACE inhibitor but also have ß-antagonistic effects.


Assuntos
Asparagus , Metaboloma , Animais , Vias Biossintéticas , Pressão Sanguínea , Dissulfetos , Marcação por Isótopo , Metabolômica , Camundongos , Melhoramento Vegetal
11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035165

RESUMO

Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such "end" products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.


Assuntos
Adaptação Fisiológica , Arabidopsis/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Enxofre/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulases/metabolismo
12.
Plant Cell ; 33(1): 129-152, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751095

RESUMO

Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignanas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo
13.
J Agric Food Chem ; 69(32): 8981-8990, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33570932

RESUMO

Lipids exhibit functional bioactivities based on their polar and acyl chain properties; humans obtain lipids from dietary plant product intake. Therefore, the identification of different molecular species facilitates the evaluation of biological functions and nutrition levels and new phenotype-modulating lipid structures. As a rapid screening strategy, we performed untargeted lipidomics for 155 agricultural products in 58 species from 23 plant families, wherein product-specific lipid diversities were shown using computational mass spectrometry. We characterized 716 lipid species, for which the profiles revealed the National Center for Biotechnology Information-established organismal classification and unique plant tissue metabotypes. Moreover, we annotated unreported subclasses in plant lipidology; e.g., triacylglycerol estolide (TG-EST) was detected in rice seeds (Oryza sativa) and several plant species. TG-EST is known as the precursor molecule producing the fatty acid ester of hydroxy fatty acid, which lowers ambient glycemia and improves glucose tolerance. Hence, our method can identify agricultural plant products containing valuable lipid ingredients.


Assuntos
Lipidômica , Oryza , Ácidos Graxos , Humanos , Lipídeos , Espectrometria de Massas
14.
Nat Commun ; 12(1): 405, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452249

RESUMO

Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes' evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


Assuntos
Camptotecina/biossíntese , Evolução Molecular , Genoma de Planta/genética , Proteínas de Plantas/genética , Rubiaceae/metabolismo , Vias Biossintéticas/genética , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas , Genômica , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Rubiaceae/genética , Alcaloides de Vinca/biossíntese
15.
Bioinformatics ; 36(13): 3966-3974, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369554

RESUMO

MOTIVATION: De novo assembly of reference-quality genomes used to require enormously laborious tasks. In particular, it is extremely time-consuming to build genome markers for ordering assembled contigs along chromosomes; thus, they are only available for well-established model organisms. To resolve this issue, recent studies demonstrated that Hi-C could be a powerful and cost-effective means to output chromosome-length scaffolds for non-model species with no genome marker resources, because the Hi-C contact frequency between a pair of two loci can be a good estimator of their genomic distance, even if there is a large gap between them. Indeed, state-of-the-art methods such as 3D-DNA are now widely used for locating contigs in chromosomes. However, it remains challenging to reduce errors in contig orientation because shorter contigs have fewer contacts with their neighboring contigs. These orientation errors lower the accuracy of gene prediction, read alignment, and synteny block estimation in comparative genomics. RESULTS: To reduce these contig orientation errors, we propose a new algorithm, named HiC-Hiker, which has a firm grounding in probabilistic theory, rigorously models Hi-C contacts across contigs, and effectively infers the most probable orientations via the Viterbi algorithm. We compared HiC-Hiker and 3D-DNA using human and worm genome contigs generated from short reads, evaluated their performances, and observed a remarkable reduction in the contig orientation error rate from 4.3% (3D-DNA) to 1.7% (HiC-Hiker). Our algorithm can consider long-range information between distal contigs and precisely estimates Hi-C read contact probabilities among contigs, which may also be useful for determining the ordering of contigs. AVAILABILITY AND IMPLEMENTATION: HiC-Hiker is freely available at: https://github.com/ryought/hic_hiker.


Assuntos
Genoma , Genômica , Algoritmos , Cromossomos/genética , Mapeamento de Sequências Contíguas , Humanos , Modelos Estatísticos , Análise de Sequência de DNA
16.
DNA Res ; 27(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32426807

RESUMO

Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids' metabolism. This study provides a valuable resource for further investigation of specialized metabolites' biosynthesis in C. officinalis.


Assuntos
Cornus/genética , Metaboloma , Transcriptoma , Cornus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genômica/métodos , Taninos Hidrolisáveis/metabolismo , Iridoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo
17.
Plant Cell Physiol ; 61(8): 1464-1476, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374863

RESUMO

Phomopsis asparagi is one of the most serious fungal pathogens, which causes stem blight disease in Asparagus officinalis (AO), adversely affecting its production worldwide. Recently, the development of novel asparagus varieties using wild Asparagus genetic resources with natural P. asparagi resistance has become a priority in Japan due to the lack of resistant commercial AO cultivars. In this study, comparative metabolome and transcriptome analyses of susceptible AO and resistant wild Asparagus kiusianus (AK) 24 and 48 h postinoculated (AOI_24 hpi, AOI_48 hpi, AKI_24 hpi and AKI_48 hpi, respectively) with P. asparagi were conducted to gain insights into metabolic and expression changes associated with AK species. Following infection, the resistant wild AK showed rapid metabolic changes with increased levels of flavonoids and steroidal saponins and decreased asparagusic acid glucose ester content, compared with the susceptible AO plants. Transcriptome data revealed a total of 21 differentially expressed genes (DEGs) as the core gene set that displayed upregulation in the resistant AK versus susceptible AO after infection with P. asparagi. Kyoto Encyclopedia of Genes and Genomes pathway analysis of these DEGs identified 11 significantly enriched pathways, including flavonoid biosynthesis and primary metabolite metabolism, in addition to plant signaling and defense-related pathways. In addition, comparative single-nucleotide polymorphism and Indel distributions in susceptible AO and resistant AK plants were evaluated using the latest AO reference genome Aspof.V1. The data generated in this study are important resources for advancing Asparagus breeding programs and for investigations of genetic linkage mapping, phylogenetic diversity and plant defense-related genes.


Assuntos
Asparagus/imunologia , Resistência à Doença , Phomopsis , Doenças das Plantas/imunologia , Asparagus/genética , Asparagus/metabolismo , Asparagus/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Curr Opin Plant Biol ; 55: 84-92, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388402

RESUMO

The exact mechanics of specialized metabolism and its importance throughout plant evolution remain mysterious. Specialized metabolites and their corresponding biosynthetic genes are crucial to understand the reason for the prevalence of certain metabolism. Even though mass spectrometry-based metabolomics has enabled us to acquire data about the structural properties of unknown specialized metabolites as well as known metabolites and their corresponding isomers/analogs, extensive analytical approaches are still required. Herein, we review the most advanced analytical approaches using stable isotope labeling that can be used to identify the unknown specialized metabolites.


Assuntos
Metabolômica , Plantas , Marcação por Isótopo , Espectrometria de Massas
19.
Anal Chem ; 92(8): 5670-5675, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083463

RESUMO

Monoterpene indole alkaloids (MIAs) in medicinal plants remain uncharacterized owing to their complicated structure by metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) despite their pharmaceutical importance. We demonstrate an untargeted metabolome analysis with 15nitrogen (N) labeling to characterize MIAs having an indolic skeleton in the flowers, leaves, petioles, stems, and roots of Catharanthus roseus. Principal component analysis using 15N- and nonlabeled metabolome data showed that N-containing metabolites (N-metabolites) are labeled with 15N. Paring of the 15N- and nonlabeled precursor ions were performed using the criteria of retention time, difference of m/z value, and a nonlabeled product ion at m/z 144.08 that indicates an indolic skeleton. The mass shift of the m/z value of the product and precursor ions to their 15N-labeled ions identified the number of N of their ions. Finally, molecular formula of 45 MIAs was unambiguously identified using the identified N number. The alkaloid network analysis using the MS/MS similarity showed the structural commonness and uniqueness among the MIAs. Of them, antirhine was identified using an authentic standard compound. Multimetabolomics using LC-MS/MS and imaging mass spectrometry showed that antirhine accumulates considerably in the epidermis and vascular cylinder of the roots. The developed approach showed the existence of the missing MIAs. The modification of this approach will identify other MIAs that contain a hydroxylated or methoxylated indolic skeleton.


Assuntos
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Metabolômica , Monoterpenos/metabolismo , Catharanthus/química , Cromatografia Líquida , Alcaloides Indólicos/análise , Estrutura Molecular , Monoterpenos/análise , Isótopos de Nitrogênio , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem
20.
Front Plant Sci ; 10: 943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428108

RESUMO

During their evolution, plants have acquired the ability to produce a huge variety of compounds. Unlike the specialized metabolites that accumulate in limited numbers of species, flavonoids are widely distributed in the plant kingdom. Therefore, a detailed analysis of flavonoid metabolism in genomics and metabolomics is an ideal way to investigate how plants have developed their unique metabolic pathways during the process of evolution. More comprehensive and precise metabolite profiling integrated with genomic information are helpful to emerge unexpected gene functions and/or pathways. The distribution of flavonoids and their biosynthetic genes in the plant kingdom suggests that flavonoid biosynthetic pathways evolved through a series of steps. The enzymes that form the flavonoid scaffold structures probably first appeared by recruitment of enzymes from primary metabolic pathways, and later, enzymes that belong to superfamilies such as 2-oxoglutarate-dependent dioxygenase, cytochrome P450, and short-chain dehydrogenase/reductase modified and varied the structures. It is widely accepted that the first two enzymes in flavonoid biosynthesis, chalcone synthase, and chalcone isomerase, were derived from common ancestors with enzymes in lipid metabolism. Later enzymes acquired their function by gene duplication and the subsequent acquisition of new functions. In this review, we describe the recent progress in metabolomics technologies for flavonoids and the evolution of flavonoid skeleton biosynthetic enzymes to understand the complicate evolutionary traits of flavonoid metabolism in plant kingdom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...