Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breed Sci ; 70(5): 567-575, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603553

RESUMO

To find new QTLs responsible for kernel cracking resistance, we screened 50 CSSLs derived from the moderately resistant cultivar 'Itadaki' (O. sativa L.) and the donor O. rufipogon. Two lines, IRSL 30 and IRSL 37, were selected as resistant. QTL analyses of the percentage of cracked kernels (PCK) in F4 individuals derived from "Itadaki/IRSL 30" and "Itadaki/IRSL 37" identified a major QTL, qCR (Cracking Resistance) 8-2, at the same position on chromosome 8 in both populations. 'IRSL 30' and 'IRSL 37' had a reduced PCK. These results show that qCR8-2 is likely to be an important QTL for kernel cracking resistance. Both lines had long awns, linked to qCR8-2, but the awnless line 'Chukei 19301' was also derived from "Itadaki/IRSL 37", so qCR8-2 is distinct from the gene for awn development. We consider that qCR8-2 will help in the breeding of new rice cultivars with high cracking resistance and in elucidating the physiological mechanism of kernel cracking.

2.
Breed Sci ; 62(4): 334-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23341747

RESUMO

It has long been known that a bacterial leaf blight-resistant line in rice obtained from a crossing using 'Asominori' as a resistant parent also has resistance to blast, but a blast resistance gene in 'Asominori' has not been investigated in detail. In the present study, a blast resistance gene in 'Asominori', tentatively named Pias(t), was revealed to be located within 162-kb region between DNA markers YX4-3 and NX4-1 on chromosome 4 and to be linked with an 'Asominori' allele of the bacterial leaf blight resistance gene Xa1, tentatively named Xa1-as(t). An 'Asominori' allele of Pias(t) was found to be dominant and difference of disease severity between lines having the 'Asominori' allele of Pias(t) and those without it was 1.2 in disease index from 0 to 10. Pias(t) was also closely linked with the Ph gene controlling phenol reaction, suggesting the possibility of successful selection of blast resistance using the phenol reaction. Since blast-resistant commercial cultivars have been developed using 'Asominori' as a parent, Pias(t) is considered to be a useful gene in rice breeding for blast resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...