Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999884

RESUMO

BACKGROUND: The sleep-low method has been proposed as a way to sleep in a low-glycogen state, increase the duration of low glycogen availability and sleep and temporarily restrict carbohydrates to improve exercise performance. However, long-term dietary restriction may induce mental stress in athletes. Therefore, if it can be shown that the effects of the sleep-low method can be achieved by restricting the carbohydrate intake at night (the nighttime carbohydrate restriction method), innovative methods could be developed to reduce weight in individuals with obesity and enhance athletes' performance with reduced stress and in a shorter duration when compared with those of previous studies. With this background, we conducted a study with the purpose of examining the intervention effects of a short-term intensive nighttime carbohydrate restriction method. METHODS: A total of 22 participants were recruited among university students participating in sports club activities. The participants were assigned at random to groups, including a nighttime carbohydrate restriction group of 11 participants (6 males, 5 females; age 22.3 ± 1.23) who started a carbohydrate-restricted diet and a group of 11 participants (5 males, 6 females; age 21.9 ± 7.9) who continued with their usual diet. The present study had a two-group parallel design. In the first week, no dietary restrictions were imposed on either group, and the participants consumed their own habitual diets. In the second week, the total amount of calories and carbohydrate intake measured in the first week were divided by seven days, and the average values were calculated. These were used as the daily calorie and carbohydrate intakes in the second week. Only the nighttime carbohydrate restriction group was prohibited from consuming carbohydrates after 4:00 p.m. During the two-week study period, all participants ran for one hour each day before breakfast at a heart rate of 65% of their maximum heart rate. RESULTS: The results obtained from young adults participating in sports showed significant differences in peak oxygen consumption (V·O2peak), work rate max, respiratory quotient (RQ), body weight and lean body mass after the intervention when compared with before the intervention in the nighttime carbohydrate restriction group (p < 0.05). CONCLUSIONS: Our findings suggest that the nighttime carbohydrate restriction method markedly improves fat metabolism even when performed for a short period. This method can be used to reduce body weight in individuals with obesity and enhance athletes' performance. However, it is important to consider the intake of nutrition other than carbohydrates.


Assuntos
Dieta com Restrição de Carboidratos , Exercício Físico , Humanos , Masculino , Feminino , Adulto Jovem , Dieta com Restrição de Carboidratos/métodos , Adulto , Exercício Físico/fisiologia , Carboidratos da Dieta/administração & dosagem , Metabolismo dos Lipídeos/fisiologia , Sono/fisiologia , Desempenho Atlético/fisiologia , Adolescente , Ingestão de Energia , Fatores de Tempo
2.
Front Physiol ; 15: 1227316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529482

RESUMO

Purpose: High-intensity interval training (HIIT) may induce training-specific physiological adaptations such as improved respiratory and cardiovascular adjustments before and after the onset of high-intensity exercise, leading to improved exercise performance during high-intensity exercise. The present study investigated the effects of HIIT on time-dependent cardiorespiratory adjustment during maximal exercise and before and after initiation of high-intensity exercise, as well as on maximal exercise performance. Methods: 21 healthy male college students were randomly assigned to HIIT group (n = 11) or control group (n = 10). HIIT group performed training on a cycle ergometer once a week for 8 weeks. The training consisted of three bouts of exercise at 95% maximal work rate (WRmax) until exhaustion. Before and after the HIIT program, dynamic cardiorespiratory function was investigated by ramp and step exercise tests, and HIIT-induced cardiac morphological changes were assessed using echocardiography. Results: HIIT significantly improved not only maximal oxygen uptake and minute ventilation, but also maximal heart rate (HR), systolic blood pressure (SBP), and time to exhaustion in both exercise tests (p < 0.05). Time-dependent increases in minute ventilation (VE) and HR before and at the start of exercise were significantly enhanced after HIIT. During high-intensity exercise, there was a strong correlation between percent change (from before to after HIIT program) in time to exhaustion and percent change in HRmax (r = 0.932, p < 0.001). Furthermore, HIIT-induced cardiac morphological changes such as ventricular wall hypertrophy was observed (p < 0.001). Conclusion: We have demonstrated that HIIT at 95% WRmax induces training-specific adaptations such as improved cardiorespiratory adjustments, not only during maximal exercise but also before and after the onset of high-intensity exercise, improvement of exercise performance mainly associated with circulatory systems.

3.
J Physiol Sci ; 72(1): 30, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434503

RESUMO

Moxibustion is a traditional East Asian medicine treatment that involves burning moxa directly or indirectly on or near the skin at a specific site of the body, called an acupoint. However, whether moxibustion induces cardiovascular responses by modulating autonomic nervous activity remains unknown. The purpose of this study was to elucidate the effects of indirect moxibustion on cardiovascular responses and autonomic nervous activity. Fifteen healthy volunteers participated in the study. Each subject received regional heat stimulation by indirect moxibustion at the lower leg acupoint. Heart rate, RR intervals, blood pressure and skin temperature were measured continuously for 3 min at rest and 5 min during indirect moxibustion. Local skin temperature increased reaching a peak (45.3 ± 3.3 °C) at 2 min after moxibustion was started, and was accompanied by a significant decrease in heart rate (63.0 ± 7.8 to 60.8 ± 7.8 bpm, p < 0.05) together with a significant increase in root mean square difference of successive RR intervals. Regional heat stimulation by indirect moxibustion induced bradycardic response, which was modulated by autonomic nervous system.


Assuntos
Sistema Cardiovascular , Moxibustão , Humanos , Temperatura Alta , Pontos de Acupuntura , Sistema Nervoso Autônomo
4.
Physiol Rep ; 10(5): e15210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246949

RESUMO

This study aimed to investigate whether anticipatory cardiorespiratory responses vary depending on the intensity of the subsequent exercise bout, and whether anticipatory cardiorespiratory adjustments contribute importantly to enhancing exercise performance during high-intensity exercise. Eleven healthy men were provided advance notice of the exercise intensity and a countdown to generate anticipation during 10 min prior to exercise at 0, 50, 80 or 95% maximal work-rate (Experiment 1). A different group of subjects (n = 15) performed a time to exhaustion trial with or without anticipatory countdown (Experiment 2). In Experiment 1, heart rate (HR), oxygen uptake (VO2 ) and minute ventilation (VE ) during pre-exercise resting period increased over time and depended on the subsequent exercise intensity. Specifically, there was already a 7.4% increase in HR from more than 5 min prior to the start of exercise at 95% maximal work-rate, followed by progressively augmented increases of 12.5% between 2 and 3 min before exercise, 24.4% between 0 and 1 min before exercise. In Experiment 2, the initial HR for the first 10 s of exercise in the task with anticipation was 11.4% larger compared to without anticipation (p < 0.01), and the difference in HR between the two conditions decreased in a time-dependent manner. In contrast, the initial increases in VO2 and VE were significantly lower in the task with anticipation than that without anticipation. The time to exhaustion during high-intensity exercise was 14.6% longer under anticipation condition compared to no anticipation (135 ± 26 s vs. 119 ± 26 s, p = 0.003). In addition, the enhanced exercise performance correlated positively with increased HR response just before and immediately after exercise onset (p < 0.01). These results showed that anticipatory cardiorespiratory adjustments (feedforward control) via the higher brain that operate before starting exercise may play an important role in minimizing the time delay of circulatory response and enhancing performance after onset of high-intensity exercise in man.


Assuntos
Exercício Físico , Consumo de Oxigênio , Exercício Físico/fisiologia , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Masculino
5.
BMC Sports Sci Med Rehabil ; 13(1): 129, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656165

RESUMO

BACKGROUND: The purpose of the present study was to investigate the effects of bradycardia induced by pre-exercise acupuncture on heart rate responses during short-duration exercise. METHODS: A total of 29 healthy subjects underwent two protocols: protocol 1 assessed the effects of manual acupuncture on heart rate response during rest, and protocol 2 tested the hypothesis that the bradycardic effects induced by pre-exercise acupuncture continue during low- and high-intensity exercise. Their average age, height, weight, and body mass index were 21.2 ± 2.0 years, 167.2 ± 8.8 cm, 63.8 ± 12.8 kg, and 22.7 ± 3.5 kg/m2, respectively. In acupuncture stimulations for protocols 1 and 2, an acupuncture needle was inserted into the lower leg and manual acupuncture stimulation was performed at 1 Hz. RESULTS: In protocol 1 (resting condition), acupuncture stimulation induced a bradycardic response, which continued for 4 min after the cessation of acupuncture stimulation (p < 0.05). In protocol 2, the bradycardic response induced by pre-exercise acupuncture stimulation remained during low-intensity exercise and in the beginning of high-intensity exercise performed immediately after the cessation of acupuncture stimulation (p < 0.05). However, the effects disappeared when post-acupuncture exercise was performed when the heart rate was approximately 140 beats/min during high-intensity exercise. The rating of perceived exertion after exercise differed significantly between the acupuncture stimulation task (7.9 ± 1.6) and no-stimulation task (8.5 ± 2.0) (p = 0.03) only in the low intensity group. CONCLUSION: This study may provide new insights into the effect of acupuncture stimulation on psycho-physiological conditions during exercise.

6.
Front Physiol ; 11: 1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013469

RESUMO

This study investigated the effect of low-frequency severe-intensity interval training on the respiratory compensation point (RCP) during incremental exercise test. Eighteen healthy males (age; 20.7 ± 2.2 years, range 18 to 29 years, height; 174.0 ± 5.6 cm, weight; 68.8 ± 13.5 kg) were randomly assigned to an interval training group or a control group. Interval training was conducted once weekly for 3 months. Each session consisted of three bouts of bicycle ergometer exercise at 80% maximum work rate until volitional fatigue. Before (baseline) and after the 3-month intervention, incremental exercise test was performed on a bicycle ergometer for determination of ventilatory threshold (VT), RCP, and peak oxygen consumption (V̇O 2 peak). The training program resulted in significant increases of V̇O 2 peak (+ 14%, p < 0.001, η p 2 = 0.437), oxygen consumption (V̇O 2) at VT (+ 18%, p < 0.001, η p 2 = 0.749) and RCP (+ 15%, p = 0.03, η p 2 = 0.239) during incremental exercise test in the training group. Furthermore, a significant positive correlation was observed between the increase in V̇O 2 peak and increase in V̇O 2 at RCP after intervention (r = 0.87, p = 0.002) in the training group. Tidal volumes at VT (p = 0.04, η p 2 = 0.270) and RCP (p = 0.01, η p 2 = 0.370) also increased significantly after intervention compared to baseline. Low-frequency severe-intensity interval training induced a shift in RCP toward higher work rate accompanied by higher tidal volume during incremental exercise test.

7.
J Physiol Sci ; 70(1): 2, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32039689

RESUMO

Fragrance inhalation of essential oils is widely used in aromatherapy, and it is known to affect blood pressure (BP) and heart rate (HR) via autonomic control of circulation. In this study, we aimed to test the hypothesis that the changes in hemodynamics with fragrance inhalation were observed along with changes in muscle sympathetic nerve activity (MSNA). In study 1, thirteen healthy men were exposed to fragrance stimulation of grapefruit essential oil for 10 min, and BP, HR, and MSNA were continuously measured. In study 2, another nine healthy men were exposed to the same fragrance stimulation; responses in BP and HR were continuously measured, and plasma noradrenaline and cortisol concentrations were determined. We found that diastolic BP increased significantly during fragrance inhalation, while the other variables remained unchanged in both studies. Although MSNA burst frequency, burst incidence, and total activity remained unchanged during fragrance inhalation, we found a significant linear correlation between changes in diastolic BP in the last 5 min of fragrance inhalation and changes in MSNA burst frequency. The plasma cortisol concentration decreased significantly at 10 min of fragrance inhalation, though the noradrenaline concentration remained unchanged. These results suggest, for the first time, that changes in BP with fragrance inhalation of essential oil are associated with changes in MSNA even with decreased stress hormone.


Assuntos
Citrus paradisi/química , Diástole/efeitos dos fármacos , Músculo Esquelético/inervação , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Estudos Cross-Over , Humanos , Masculino , Odorantes , Óleos Voláteis/química , Óleos de Plantas/química , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
8.
J Physiol Sci ; 69(6): 1077-1084, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31707634

RESUMO

The cardiovascular effects of the autonomic nervous system (ANS) are modulated by inputs from peripheral sensors and other brain regions. However, it currently remains unknown whether the manual acupuncture (MA) stimulation of different acupuncture points evokes different responses by the heart and vasculature, a phenomenon known as "site specificity". Sixty healthy subjects were randomly divided into a control group and MA stimulation groups at the lower leg, ear, abdomen, and forearm. MA was performed at 1 Hz for 2 min. A depressor response was observed only in the lower leg stimulation group, in which mean blood pressure significantly decreased from 83.4 ± 10.1 to 80.9 ± 11.7 mmHg (p < 0.003). A bradycardic response was elicited in all MA stimulation groups. There was no significant differences in the magnitude of the bradycardic response between groups. MA-induced cardiovascular responses, which may be mediated by the modulation of ANS, differ depending on acupuncture points.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Bradicardia , Frequência Cardíaca/fisiologia , Pontos de Acupuntura , Sistema Cardiovascular , Feminino , Humanos , Masculino , Adulto Jovem
9.
Exp Physiol ; 103(5): 748-760, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509982

RESUMO

NEW FINDINGS: What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. ABSTRACT: Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying increased oxygen uptake. The hyperbolic plant curve shifted rightward and downward depending on exercise intensity as predicted by increased metabolism. Exercise intensity-dependent changes in operating points (V̇E and P ETC O2) were estimated by integrating the controller and plant curves in a respiratory equilibrium diagram. In conclusion, we developed an anaesthetized-rat model for studying exercise hyperpnoea, using systems analysis for quantitative characterization of the respiratory system. This novel experimental model will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models.


Assuntos
Hiperventilação/fisiopatologia , Condicionamento Físico Animal/fisiologia , Ventilação Pulmonar/fisiologia , Animais , Dióxido de Carbono/metabolismo , Masculino , Contração Muscular/fisiologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração , Corrida/fisiologia
10.
Endocr Connect ; 7(1): 97-106, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29158344

RESUMO

The effects of water exercise on gut hormone concentrations and appetite currently remain unclear. The aim of the present study was to investigate the effects of treadmill walking in water on gut hormone concentrations and appetite. Thirteen men (mean ± s.d. age: 21.6 ± 2.2 years, body mass index: 22.7 ± 2.8 kg/m2, peak oxygen uptake (VO2peak): 49.8 ± 7.8 mL/kg per min) participated in the walking in water and on land challenge. During the study period, ratings of subjective feelings of hunger, fullness, satiety and motivation to eat were reported on a 100-mm visual analog scale. A test meal was presented after walking, and energy intake (EI) was calculated. Blood samples were obtained during both trials to measure glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and acylated ghrelin (AG) concentrations. Hunger scores (How hungry do you feel?) were significantly lower during the water trial than during the land trial (P < 0.05). No significant differences were observed in EI between water and land trials. GLP-1 concentrations were significantly higher in the water trial than in the land trial (P < 0.05). No significant differences were observed in PYY concentrations between water and land trials. AG concentrations were significantly lower in the water trial than in the land trial (P < 0.01). In conclusion, changes in gut hormone concentrations during walking in water contribute to the exercise-induced suppression of appetite and provide novel information on the influence of walking in water on the acute regulation of appetite.

11.
PLoS One ; 12(3): e0172841, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257441

RESUMO

We aimed to develop a novel method to quantitatively evaluate the effects of odor stimulation on cardiorespiratory functions over time, and to examine the potential usefulness of clinical aromatherapy. Eighteen subjects participated. Nine people were assigned to each of the two resting protocols. Protocol 1: After resting for 2 min in a sitting position breathing room air, the subject inhaled either air or air containing sweet marjoram essential oil from the Douglas bag for 6 min, Protocol 2: After resting for 5 min in a supine position, the subject inhaled the essential oil for 10 min, and then recovered for 10 min breathing room air. All subjects inhaled the essential oil through a face mask attached to one-way valve, and beat-to-beat heart rate (HR) and arterial blood pressure (BP) as well as breath-by-breath respiratory variables were continuously recorded. In both protocols, during fragrance inhalation of the essential oil, time-dependent decrease in mean BP and HR were observed (P<0.05). During post-inhalation recovery, the significant fragrance-induced bradycardic effect lasted at least 5 min (- 3.1 ± 3.9% vs. pre-inhalation baseline value, p<0.05). The mean BP response at the start of odor stimulation was approximated by a first-order exponential model. However, such fragrance-induced changes were not observed in the respiratory variables. We established a novel approach to quantitatively and accurately evaluate the effects of quantitative odor stimulation on dynamic cardiorespiratory functions, and the duration of the effect. This methodological approach may be useful for scientific evaluation of aromatherapy as an approach to integrated medicine, and the mechanisms of action of physiological effects in fragrance compounds.


Assuntos
Aromaterapia/métodos , Odorantes , Respiração/efeitos dos fármacos , Administração por Inalação , Adulto , Pressão Sanguínea/efeitos dos fármacos , Aptidão Cardiorrespiratória/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Óleos Voláteis/efeitos adversos , Óleos Voláteis/química , Óleos Voláteis/uso terapêutico , Perfumes/efeitos adversos , Perfumes/química
12.
Clin Auton Res ; 26(1): 59-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695399

RESUMO

PURPOSE: Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. METHODS: Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. RESULTS: Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). CONCLUSIONS: These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.


Assuntos
Pressão Sanguínea/fisiologia , Eletroacupuntura/métodos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo/fisiologia , Bradicardia/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
13.
Clin Med Insights Cardiol ; 9(Suppl 1): 133-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26561001

RESUMO

OBJECTIVE: The respiratory operating point is determined by the interplay between the controller and plant subsystem elements within the respiratory chemoreflex feedback system. This study aimed to establish the methodological basis for quantitative analysis of the open-loop dynamic properties of the human respiratory control system and to apply the results to explore detailed mechanisms of the regulation of respiration and the possible mechanism of periodic breathing in chronic heart failure. METHODS AND RESULTS: In healthy volunteers, we measured arterial CO2 partial pressure (PaCO2) and minute ventilation [Formula: see text] to estimate the dynamic properties of the controller ( [Formula: see text] relation) and plant ( [Formula: see text] relation). The dynamic properties of the controller and plant approximated first- and second-order exponential models, respectively, and were described using parameters including gain, time constant, and lag time. We then used the open-loop transfer functions to simulate the closed-loop respiratory response to an exogenous disturbance, while manipulating the parameter values to deviate from normal values but within physiological ranges. By increasing both the product of gains of the two subsystem elements (total loop gain) and the lag time, the condition of system oscillation (onset of periodic breathing) was satisfied. CONCLUSION: When abnormality occurs in a part of the respiratory chemoreflex system, instability of the control system is amplified and may result in the manifestation of respiratory abnormalities such as periodic breathing.

14.
J Appl Physiol (1985) ; 119(5): 527-33, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159757

RESUMO

The purpose of the present study was to examine whether the response of cerebral blood flow to an acute change in perfusion pressure is modified by an acute increase in central blood volume. Nine young, healthy subjects voluntarily participated in this study. To measure dynamic cerebral autoregulation during normocapnic and hypercapnic (5%) conditions, the change in middle cerebral artery mean blood flow velocity was analyzed during acute hypotension caused by two methods: 1) thigh-cuff occlusion release (without change in central blood volume); and 2) during the recovery phase immediately following release of lower body negative pressure (LBNP; -50 mmHg) that initiated an acute increase in central blood volume. In the thigh-cuff occlusion release protocol, as expected, hypercapnia decreased the rate of regulation, as an index of dynamic cerebral autoregulation (0.236 ± 0.018 and 0.167 ± 0.025 s(-1), P = 0.024). Compared with the cuff-occlusion release, the acute increase in central blood volume (relative to the LBNP condition) with LBNP release attenuated dynamic cerebral autoregulation (P = 0.009). Therefore, the hypercapnia-induced attenuation of dynamic cerebral autoregulation was not observed in the LBNP release protocol (P = 0.574). These findings suggest that an acute change in systemic blood distribution modifies dynamic cerebral autoregulation during acute hypotension.


Assuntos
Volume Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Hipotensão/fisiopatologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Homeostase/fisiologia , Humanos , Hipercapnia/fisiopatologia , Pressão Negativa da Região Corporal Inferior/métodos , Masculino , Artéria Cerebral Média/fisiologia
15.
Med Sci Sports Exerc ; 47(4): 789-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25137370

RESUMO

PURPOSE: The present study investigated the effects of severe-intensity interval training at a frequency of once a week on cardiorespiratory function at rest and during exercise. METHODS: Fourteen young healthy males were randomly assigned to either an interval training group or control group. Cardiorespiratory function was investigated by incremental maximal exercise test and constant work rate submaximal exercise test before and after the intervention period in all subjects. Submaximal exercise test was conducted at two work rates (80% ventilatory threshold (VT) level and 100% VT level plus 50% of the difference between VT and peak oxygen consumption (V˙O2)) for 8 min; the same work rates and duration were used before and after training. Left ventricular adaptations were assessed by echocardiography under supine resting conditions before and after training. In the interval training group, seven subjects performed cycle ergometer training once per week for 3 months. The training consisted of three bouts of exercises to volitional fatigue at 80% maximum work rate. RESULTS: Increased V˙O2max (+13%, P = 0.015), VT (+21%, P = 0.001), and left ventricular posterior wall thickness (+18%, P = 0.002) and reduced minute ventilation (-12%, P = 0.032) and blood lactate concentration (-16%, P = 0.025) during high-intensity exercise were observed after the training program compared with baseline. Although not significant, V˙O2 and cycling economy (V˙O2 per work rate) during high-intensity exercise decreased slightly after training. CONCLUSION: The present results indicate that severe-intensity interval training, even when performed at a low frequency, markedly improves cardiorespiratory function as well as induces cardiac morphological adaptations involving left ventricular hypertrophy and cardiorespiratory metabolic response during submaximal exercise. The present findings may provide new insights for low-frequency, severe-intensity interval training in the field of sports science.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Educação Física e Treinamento/métodos , Fenômenos Fisiológicos Respiratórios , Adaptação Fisiológica , Adolescente , Adulto , Ciclismo/fisiologia , Teste de Esforço , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Fatores de Tempo , Ultrassonografia , Adulto Jovem
16.
Am J Physiol Heart Circ Physiol ; 306(12): H1669-78, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24778171

RESUMO

The respiratory operating point (ventilatory or arterial PCO2 response) is determined by the intersection point between the controller and plant subsystem elements within the respiratory control system. However, to what extent changes in central blood volume (CBV) influence these two elements and the corresponding implications for the respiratory operating point remain unclear. To examine this, 17 apparently healthy male participants were exposed to water immersion (WI) or lower body negative pressure (LBNP) challenges to manipulate CBV and determine the corresponding changes. The respiratory controller was characterized by determining the linear relationship between end-tidal PCO2 (PetCO2 ) and minute ventilation (Ve) [Ve = S × (PetCO2 - B)], whereas the plant was determined by the hyperbolic relationship between Ve and PetCO2 (PetCO2 = A/Ve + C). Changes in Ve at the operating point were not observed under either WI or LBNP conditions despite altered PetCO2 (P < 0.01), indicating a moving respiratory operating point. An increase (WI) and a decrease (LBNP) in CBV were shown to reset the controller element (PetCO2 intercept B) rightward and leftward, respectively (P < 0.05), without any change in S, whereas the plant curve remained unaltered at the operating point. Collectively, these findings indicate that modification of the controller element rather than the plant element is the major factor that contributes toward an alteration of the respiratory operating point during CBV shifts.


Assuntos
Volume Sanguíneo/fisiologia , Dióxido de Carbono/metabolismo , Hemodinâmica/fisiologia , Mecânica Respiratória/fisiologia , Adolescente , Adulto , Humanos , Imersão/fisiopatologia , Pressão Negativa da Região Corporal Inferior , Masculino , Ventilação Pulmonar/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Adulto Jovem
17.
Exp Physiol ; 99(6): 849-58, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632495

RESUMO

In normoxic conditions, a reduction in arterial carbon dioxide tension causes cerebral vasoconstriction, thereby reducing cerebral blood flow and modifying dynamic cerebral autoregulation (dCA). It is unclear to what extent these effects are altered by acute hypoxia and the associated hypoxic ventilatory response (respiratory chemoreflex). This study tested the hypothesis that acute hypoxia attenuates arterial CO2 tension-mediated regulation of cerebral blood flow to help maintain cerebral O2 homeostasis. Eight subjects performed three randomly assigned respiratory interventions following a resting baseline period, as follows: (1) normoxia (21% O2); (2) hypoxia (12% O2); and (3) hypoxia with wilful restraint of the respiratory chemoreflex. During each intervention, 0, 2.0, 3.5 or 5.0% CO2 was sequentially added (8 min stages) to inspired gas mixtures to assess changes in steady-state cerebrovascular CO2 reactivity and dCA. During normoxia, the addition of CO2 increased internal carotid artery blood flow and middle cerebral artery mean blood velocity (MCA Vmean), while reducing dCA (change in phase = -0.73 ± 0.22 rad, P = 0.005). During acute hypoxia, internal carotid artery blood flow and MCA Vmean remained unchanged, but cerebrovascular CO2 reactivity (internal carotid artery, P = 0.003; MCA Vmean, P = 0.031) and CO2-mediated effects on dCA (P = 0.008) were attenuated. The effects of hypoxia were not further altered when the respiratory chemoreflex was restrained. These findings support the hypothesis that arterial CO2 tension-mediated effects on the cerebral vasculature are reduced during acute hypoxia. These effects could limit the degree of hypocapnic vasoconstriction and may help to regulate cerebral blood flow and cerebral O2 homeostasis during acute periods of hypoxia.


Assuntos
Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/sangue , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/sangue , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Hipóxia/fisiopatologia , Masculino , Fatores de Tempo , Adulto Jovem
18.
Springerplus ; 2(1): 83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23504454

RESUMO

The purpose of this study was to investigate the effects of 12 weeks of exercise training on gut hormone levels after a single bout of exercise in middle-aged Japanese women. Twenty healthy middle-aged women were recruited for this study. Several measurements were performed pre and post exercise training, including: body weight and composition, peak oxygen consumption (peak VO2), energy intake after the single bout of exercise, and the release of gut hormones with fasting and after the single bout of exercise. Exercise training resulted in significant increases in acylated ghrelin fasting levels (from 126.6 ± 5.6 to 135.9 ± 5.4 pmol/l, P < 0.01), with no significant changes in GLP-1 (from 0.54 ± 0.04 to 0.55 ± 0.03 pmol/ml) and PYY (from 1.20 ± 0.07 to 1.23 ± 0.06 pmol/ml) fasting levels. GLP-1 levels post exercise training after the single bout of exercise were significantly higher than those pre exercise training (areas under the curve (AUC); from 238.4 ± 65.2 to 286.5 ± 51.2 pmol/ml x 120 min, P < 0.001). There was a tendency for higher AUC for the time courses of PYY post exercise training than for those pre exercise training (AUC; from 519.5 ± 135.5 to 551.4 ± 128.7 pmol/ml x 120 min, P = 0.06). Changes in (delta) GLP-1 AUC were significantly correlated with decreases in body weight (r = -0.743, P < 0.001), body mass index (r = -0.732, P < 0.001), percent body fat (r = -0.731, P < 0.001), and energy intake after a single bout exercise (r = -0.649, P < 0.01) and increases in peak VO2 (r = 0.558, P < 0.05). These results suggest that the ability of exercise training to create a negative energy balance relies not only directly on its impact on energy expenditure, but also indirectly on its potential to modulate energy intake.

19.
Clin Sci (Lond) ; 125(1): 37-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23330653

RESUMO

The respiratory chemoreflex is known to be modified during orthostatic stress although the underlying mechanisms remain to be established. To determine the potential role of cerebral hypoperfusion, we examined the relationship between changes in MCA V(mean) (middle cerebral artery mean blood velocity) and ˙VE (pulmonary minute ventilation) from supine control to LBNP (lower body negative pressure; −45mmHg) at different CO(2) levels (0, 3.5 and 5% CO(2)). The regression line of the linear relationship between ˙V(E) and PETCO(2) (end-tidal CO(2)) shifted leftwards during orthostatic stress without any change in sensitivity (1.36+− 0.27 l/min per mmHg at supine to 1.06+− 0.21 l/min per mmHg during LBNP; P=0.087). In contrast, the relationship between MCA V(mean) and PETCO(2) was not shifted by LBNP-induced changes in PETCO2. However, changes in ˙V(E) from rest to LBNP were more related to changes in MCA V(mean) than changes in PETCO(2). These findings demonstrate for the first time that postural reductions in CBF (cerebral blood flow) modified the central respiratory chemoreflex by moving its operating point. An orthostatically induced decrease in CBF probably attenuated the 'washout' of CO(2) from the brain causing hyperpnoea following activation of the central chemoreflex.


Assuntos
Dióxido de Carbono/fisiologia , Circulação Cerebrovascular , Pressão Negativa da Região Corporal Inferior , Intolerância Ortostática/fisiopatologia , Ventilação Pulmonar , Adulto , Velocidade do Fluxo Sanguíneo , Humanos , Masculino , Artéria Cerebral Média/fisiopatologia , Estresse Fisiológico , Decúbito Dorsal , Adulto Jovem
20.
Exp Physiol ; 98(3): 692-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23143991

RESUMO

Hypoxia changes the regional distribution of cerebral blood flow and stimulates the ventilatory chemoreflex, thereby reducing CO2 tension. We examined the effects of both hypoxia and isocapnic hypoxia on acute changes in internal carotid (ICA) and vertebral artery (VA) blood flow. Ten healthy male subjects underwent the following two randomly assigned respiratory interventions after a resting baseline period with room air: (i) hypoxia; and (ii) isocapnic hypoxia with a controlled gas mixture (12% O2; inspiratory mmHg). In the isocapnic hypoxia intervention, subjects were instructed to maintain the rate and depth of breathing to maintain the level of end-tidal partial pressure of CO2 ( ) during the resting baseline period. The ICA and VA blood flow (velocity × cross-sectional area) were measured using Doppler ultrasonography. The was decreased (-6.3 ± 0.9%, P < 0.001) during hypoxia by hyperventilation (minute ventilation +12.9 ± 2.2%, P < 0.001), while was unchanged during isocapnic hypoxia. The ICA blood flow was unchanged (P = 0.429), while VA blood flow increased (+10.3 ± 3.1%, P = 0.010) during hypoxia. In contrast, isocapnic hypoxia increased both ICA (+14.5 ± 1.4%, P < 0.001) and VA blood flows (+10.9 ± 2.4%, P < 0.001). Thus, hypoxic vasodilatation outweighed hypocapnic vasoconstriction in the VA, but not in the ICA. These findings suggest that acute hypoxia elicits an increase in posterior cerebral blood flow, possibly to maintain essential homeostatic functions of the brainstem.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Hipóxia/fisiopatologia , Artéria Vertebral/fisiologia , Adulto , Humanos , Masculino , Oxigênio/sangue , Pressão Parcial , Respiração , Ultrassonografia Doppler Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...