Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675108

RESUMO

Hypoxic-ischemic brain injury arises from inadequate oxygen delivery to the brain, commonly occurring following cardiac arrest, which lacks effective treatments. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells. Given the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a promising approach. In this study, we investigate the effects of intranasally administered exosomes in an animal model. Exosomes were isolated from the cell supernatants using the ultracentrifugation method. Brain injury was induced in Sprague-Dawley rats through a transient four-vessel occlusion model. Intranasal administration was conducted with 3 × 108 exosome particles in 20 µL of PBS or PBS alone, administered daily for 7 days post-injury. Long-term cognitive behavioral assessments, biodistribution of exosomes, and histological evaluations of apoptosis and neuroinflammation were conducted. Exosomes were primarily detected in the olfactory bulb one hour after intranasal administration, subsequently distributing to the striatum and midbrain. Rats treated with exosomes exhibited substantial improvement in cognitive function up to 28 days after the insult, and demonstrated significantly fewer apoptotic cells along with higher neuronal cell survival in the hippocampus. Exosomes were found to be taken up by microglia, leading to a decrease in the expression of cytotoxic inflammatory markers.

2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397083

RESUMO

Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments. Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target for treatment intervention. Previous research has established that intravenous administration of stem cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated the ability to modulate microglial reactions and enhance blood-brain barrier integrity, their impact on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ultracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old) using a clip injury model, and 100 µg of exosomes in 1 mL of PBS or PBS alone were intravenously administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury and the formation of NETs. Flow cytometry was employed to examine the formation of circulating neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of inflammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a substantial improvement in motor function recovery and a reduction in injury size. Notably, there was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation, while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET formation via miR-125a-3p.


Assuntos
Exossomos , Armadilhas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Exossomos/metabolismo , Armadilhas Extracelulares/metabolismo , Distribuição Tecidual , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Administração Intravenosa
3.
Sci Rep ; 13(1): 5822, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037877

RESUMO

The use of artificial intelligence (AI) in the diagnosis of dry eye disease (DED) remains limited due to the lack of standardized image formats and analysis models. To overcome these issues, we used the Smart Eye Camera (SEC), a video-recordable slit-lamp device, and collected videos of the anterior segment of the eye. This study aimed to evaluate the accuracy of the AI algorithm in estimating the tear film breakup time and apply this model for the diagnosis of DED according to the Asia Dry Eye Society (ADES) DED diagnostic criteria. Using the retrospectively corrected DED videos of 158 eyes from 79 patients, 22,172 frames were annotated by the DED specialist to label whether or not the frame had breakup. The AI algorithm was developed using the training dataset and machine learning. The DED criteria of the ADES was used to determine the diagnostic performance. The accuracy of tear film breakup time estimation was 0.789 (95% confidence interval (CI) 0.769-0.809), and the area under the receiver operating characteristic curve of this AI model was 0.877 (95% CI 0.861-0.893). The sensitivity and specificity of this AI model for the diagnosis of DED was 0.778 (95% CI 0.572-0.912) and 0.857 (95% CI 0.564-0.866), respectively. We successfully developed a novel AI-based diagnostic model for DED. Our diagnostic model has the potential to enable ophthalmology examination outside hospitals and clinics.


Assuntos
Inteligência Artificial , Síndromes do Olho Seco , Humanos , Estudos Retrospectivos , Lágrimas , Sensibilidade e Especificidade , Síndromes do Olho Seco/diagnóstico
4.
J Biochem ; 135(5): 577-82, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15173195

RESUMO

We have established a large-scale manufacturing system to produce recombinant human alpha-thrombin. In this system, a high yield of alpha-thrombin is prepared from prethrombin-2 activated by recombinant ecarin. We produced human prethrombin-2 using mouse myeloma cells and an expression plasmid carrying the chicken beta-actin promoter and mutant dihydrofolate reductase gene for gene amplification. To increase prethrombin-2 expression further, we performed fed-batch cultivation with the addition of vegetable peptone in 50 liters of suspension culture. After five feedings of vegetable peptone, the expression level of the recombinant prethrombin-2 reached 200 micro g/ml. Subsequently, the recombinant prethrombin-2 could be activated to alpha-thrombin by recombinant ecarin expressed in a similar manner. Finally, recombinant alpha-thrombin was purified to homogeneity by affinity chromatography using a benzamidine-Sepharose gel. The yield from prethrombin-2 in culture medium was approximately 70%. The activity of the purified recombinant alpha-thrombin, including hydrolysis of a chromogenic substrate, release of fibrinopeptide A, and activation of protein C, was indistinguishable from that of plasma-derived alpha-thrombin. Our system is suitable for the large-scale production of recombinant alpha-thrombin, which can be used in place of clinically available alpha-thrombin derived from human or bovine plasma.


Assuntos
Endopeptidases/química , Precursores Enzimáticos/metabolismo , Protrombina/metabolismo , Proteínas Recombinantes/química , Actinas/metabolismo , Animais , Biotecnologia/métodos , Western Blotting , Células CHO , Bovinos , Linhagem Celular , Galinhas , Cromatografia de Afinidade , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Precursores Enzimáticos/isolamento & purificação , Vetores Genéticos , Humanos , Cinética , Metotrexato/farmacologia , Camundongos , Mieloma Múltiplo/metabolismo , Mutação , Plasmídeos/metabolismo , Agregação Plaquetária , Regiões Promotoras Genéticas , Protrombina/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Sefarose/química , Tetra-Hidrofolato Desidrogenase/genética , Trombina/metabolismo , Fatores de Tempo , Transfecção
5.
Int J Biol Macromol ; 30(3-4): 151-60, 2002 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-12063117

RESUMO

Tissue factor pathway inhibitor (TFPI) is a heparin-binding protein involved in the extrinsic blood coagulation system. In order to elucidate the minimal size of heparin chain required for the interaction with TFPI, we prepared a series of heparin-derived oligosaccharides with tailored chain length ranged from disaccharide to eicosasaccharide after the successive treatments of heparin, including partial N-desulphation, deaminative cleavage with nitrous acid and gel-filtration. Affinity chromatography study of each oligosaccharide fraction using TFPI as the ligand indicated that increasing the degree of polymerisation causes increased affinity, and that a remarkable change in the affinity occurs between the decamers and dodecamers. Measurement of factor Xa inhibitory activity of TFPI in the presence of each oligosaccharide fraction indicated that the fractions shorter than dodecamers only slightly enhanced the TFPI activity for factor Xa inhibition, while the fractions larger than octadecamers had an effect comparable to full-length heparin. These were compatible to the results from the kinetic analyses of the interaction between TFPI and heparin-derived oligosaccharide with an evanescent wave-based biosensor system, IAsys, using a TFPI C-terminal peptide as the ligand.


Assuntos
Heparina/química , Heparina/metabolismo , Lipoproteínas/metabolismo , Oligossacarídeos/isolamento & purificação , Sequência de Aminoácidos , Técnicas Biossensoriais , Cromatografia de Afinidade , Inibidores do Fator Xa , Lipoproteínas/química , Lipoproteínas/farmacologia , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...