Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2694, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538603

RESUMO

Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.


Assuntos
RNA Longo não Codificante , Camundongos , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios/metabolismo , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Plasticidade Neuronal/genética , Camundongos Endogâmicos C57BL
2.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577549

RESUMO

Behavioral time scale plasticity (BTSP), is a form of non-Hebbian plasticity induced by integrating pre- and postsynaptic components separated by behavioral time scale (seconds). BTSP in the hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms underlying this behavioral time scale (eligibility trace) and synapse specificity are unknown. CaMKII can be activated in a synapse-specific manner and remain active for a few seconds, making it a compelling candidate for the eligibility trace during BTSP. Here, we show that BTSP can be induced in a single dendritic spine using 2-photon glutamate uncaging paired with postsynaptic current injection temporally separated by behavioral time scale. Using an improved CaMKII sensor, we saw no detectable CaMKII activation during this BTSP induction. Instead, we observed a dendritic, delayed, and stochastic CaMKII activation (DDSC) associated with Ca 2+ influx and plateau 20-40 s after BTSP induction. DDSC requires both pre-and postsynaptic activity, suggesting that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 30 s after the BTSP protocol inhibited synaptic potentiation, indicating that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca 2+ release facilitates both DDSC and BTSP. Thus, our study suggests that the non-synapse specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.

3.
Res Sq ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993323

RESUMO

LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.

4.
Mol Brain ; 14(1): 148, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556164

RESUMO

The Cre/LoxP-based conditional knockout technology is a powerful tool for gene function analysis that allows region- and time-specific gene manipulation. However, inserting a pair of LoxP cassettes to generate conditional knockout can be technically challenging and thus time- and resource-consuming. This study proposes an efficient, low-cost method to generate floxed mice using in vitro fertilization and the CRISPR-Cas9 system over two consecutive generations. This method allowed us to produce floxed mice targeting exons 5 and 6 of CaMK1 in a short period of 125 days, using only 16 mice. In addition, we directly edited the genome of fertilized eggs of mice with our target genetic background, C57BL/6 N, to eliminate additional backcrossing steps. We confirmed that the genome of the generated floxed mice was responsive to the Cre protein. This low-cost, time-saving method for generating conditional knockout will facilitate comprehensive, tissue-specific genome analyses.


Assuntos
Sistemas CRISPR-Cas , Eletroporação/métodos , Edição de Genes/métodos , Marcação de Genes/métodos , Camundongos Knockout , Neurociências/métodos , Animais , Sequência de Bases , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Transferência Embrionária , Éxons/genética , Edição de Genes/economia , Marcação de Genes/economia , Integrases , Camundongos , Camundongos Endogâmicos C57BL , Neurociências/economia , Transgenes
5.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33863727

RESUMO

Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.

6.
Nat Commun ; 10(1): 2784, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239443

RESUMO

CaMKIIα plays an essential role in decoding Ca2+ signaling in spines by acting as a leaky Ca2+ integrator with the time constant of several seconds. However, the mechanism by which CaMKIIα integrates Ca2+ signals remains elusive. Here, we imaged CaMKIIα-CaM association in single dendritic spines using a new FRET sensor and two-photon fluorescence lifetime imaging. In response to a glutamate uncaging pulse, CaMKIIα-CaM association increases in ~0.1 s and decays over ~3 s. During repetitive glutamate uncaging, which induces spine structural plasticity, CaMKIIα-CaM association did not show further increase but sustained at a constant level. Since CaMKIIα activity integrates Ca2+ signals over ~10 s under this condition, the integration of Ca2+ signal by CaMKIIα during spine structural plasticity is largely due to Ca2+/CaM-independent, autonomous activity. Based on these results, we propose a simple kinetic model of CaMKIIα activation in dendritic spines.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/enzimologia , Animais , Cálcio/química , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/química , Calmodulina/metabolismo , Espinhas Dendríticas/genética , Ativação Enzimática , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL
7.
Artigo em Inglês | MEDLINE | ID: mdl-30210329

RESUMO

Dendritic spines are small protrusive structures on dendritic surfaces, and function as postsynaptic compartments for excitatory synapses. Plasticity of spine structure is associated with many forms of long-term neuronal plasticity, learning and memory. Inside these small dendritic compartments, biochemical states and protein-protein interactions are dynamically modulated by synaptic activity, leading to the regulation of protein synthesis and reorganization of cytoskeletal architecture. This in turn causes plasticity of structure and function of the spine. Technical advances in monitoring molecular behaviors in single dendritic spines have revealed that each signaling pathway is differently regulated across multiple spatiotemporal domains. The spatial pattern of signaling activity expands from a single spine to the nearby dendritic area, dendritic branch and the nucleus, regulating different cellular events at each spatial scale. Temporally, biochemical events are typically triggered by short Ca2+ pulses (~10-100 ms). However, these signals can then trigger activation of downstream protein cascades that can last from milliseconds to hours. Recent imaging studies provide many insights into the biochemical processes governing signaling events of molecular assemblies at different spatial localizations. Here, we highlight recent findings of signaling dynamics during synaptic plasticity and discuss their roles in long-term structural plasticity of dendritic spines.

8.
Sci Rep ; 7: 46840, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589959

RESUMO

This corrects the article DOI: 10.1038/srep15334.

9.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197549

RESUMO

Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.


Assuntos
Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/metabolismo , Transporte Proteico/fisiologia , Receptores de Glicina/metabolismo , Medula Espinal/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glicinérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fotodegradação , Transporte Proteico/efeitos dos fármacos , Receptores de Glicina/genética , Estricnina/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
10.
Sci Rep ; 6: 39564, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004840

RESUMO

Intracellular signal transduction involves a number of biochemical reactions, which largely consist of protein-protein interactions and protein conformational changes. Monitoring Förster resonance energy transfer (FRET) by fluorescence lifetime imaging microscopy (FLIM), called FLIM-FRET, is one of the best ways to visualize such protein dynamics. Here, we attempted to apply dark red fluorescent proteins with significantly smaller quantum yields. Application of the dark mCherry mutants to single-molecule FRET sensors revealed that these dark mCherry mutants are a good acceptor in a pair with mRuby2. Because the FRET measurement between mRuby2 and dark mCherry requires only the red region of wavelengths, it facilitates dual observation with other signaling sensors such as genetically encoded Ca2+ sensors. Taking advantage of this approach, we attempted dual observation of Ca2+ and Rho GTPase (RhoA and Cdc42) activities in astrocytes and found that ATP triggers both RhoA and Cdc42 activation. In early phase, while Cdc42 activity is independent of Ca2+ transient evoked by ATP, RhoA activity is Ca2+ dependent. Moreover, the transient Ca2+ upregulation triggers long-lasting Cdc42 and RhoA activities, thereby converting short-term Ca2+ signaling to long-term signaling. Thus, the new FRET pair should be useful for dual observation of intracellular biochemical reactions.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/enzimologia , Ativadores de GTP Fosfo-Hidrolase/metabolismo , Proteínas Luminescentes/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Transdução de Sinais , Espectrometria de Fluorescência , Proteína Vermelha Fluorescente
11.
Sci Rep ; 5: 15334, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469148

RESUMO

Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Luminescentes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Mutagênese , Plasmídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Teoria Quântica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteína Vermelha Fluorescente
12.
J Neurophysiol ; 114(3): 1974-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203112

RESUMO

Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.


Assuntos
Ácido Glutâmico/metabolismo , Audição , Neurogênese , Neurônios/fisiologia , Norepinefrina/metabolismo , Núcleo Olivar/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Olivar/citologia , Núcleo Olivar/crescimento & desenvolvimento , Receptores Adrenérgicos alfa 2/metabolismo
13.
PLoS One ; 10(3): e0121109, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799407

RESUMO

Genetically encoded fluorescence resonance energy transfer (FRET) biosensors have been successfully used to visualize protein activity in living cells. The sensitivity and accuracy of FRET measurements directly depend on biosensor folding efficiency, expression pattern, sensitivity, and dynamic range. Here, to improve the folding efficiency of the Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) FRET biosensor, we amplified the association domain of the CaMKIIα gene using error-prone polymerase chain reaction (PCR) and fused it to the N-terminus of mCherry in a bacterial expression vector. We also created an Escherichia coli expression library based on a previously reported fluorescent protein folding reporter method, and found a bright red fluorescent colony that contained the association domain with four mutations (F394L, I419V, A430T, and I434T). In vitro assays using the purified mutant protein confirmed improved folding kinetics of the downstream fluorescent protein, but not of the association domain itself. Furthermore, we introduced these mutations into the previously reported CaMKIIα FRET sensor and monitored its Ca2+/calmodulin-dependent activation in HeLa cells using 2-photon fluorescence lifetime imaging microscopy (2pFLIM), and found that the expression pattern and signal reproducibility of the mutant sensor were greatly improved without affecting the autophosphorylation function and incorporation into oligomeric CaMKIIα. We believe that our improved CaMKIIα FRET sensor would be useful in various types of cells and tissues, providing data with high accuracy and reproducibility. In addition, the method described here may also be applicable for improving the performance of all currently available FRET sensors.


Assuntos
Técnicas Biossensoriais/métodos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Mutação , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Vermelha Fluorescente
14.
J Physiol ; 591(16): 3821-32, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23690564

RESUMO

Fast inhibitory neurotransmission in the central nervous system is mediated by γ-aminobutyric acid (GABA) and glycine, which are accumulated into synaptic vesicles by a common vesicular inhibitory amino acid transporter (VIAAT) and are then co-released. However, the mechanisms that control the packaging of GABA + glycine into synaptic vesicles are not fully understood. In this study, we demonstrate the dynamic control of the GABA-glycine co-transmission by the neuronal glutamate transporter, using paired whole-cell patch recording from monosynaptically coupled cultured spinal cord neurons derived from VIAAT-Venus transgenic rats. Short step depolarization of presynaptic neurons evoked unitary (cell-to-cell) inhibitory postsynaptic currents (IPSCs). Under normal conditions, the fractional contribution of postsynaptic GABA or glycine receptors to the unitary IPSCs did not change during a 1 h recording. Intracellular loading of GABA or glycine via a patch pipette enhanced the respective components of inhibitory transmission, indicating the importance of the cytoplasmic concentration of inhibitory transmitters. Raised extracellular glutamate levels increased the amplitude of GABAergic IPSCs but reduced glycine release by enhancing glutamate uptake. Similar effects were observed when presynaptic neurons were intracellularly perfused with glutamate. Interestingly, high-frequency trains of stimulation decreased glycinergic IPSCs more than GABAergic IPSCs, and repetitive stimulation occasionally failed to evoke glycinergic but not GABAergic IPSCs. The present results suggest that the enhancement of GABA release by glutamate uptake may be advantageous for rapid vesicular refilling of the inhibitory transmitter at mixed GABA/glycinergic synapses and thus may help prevent hyperexcitability.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/fisiologia , Glicina/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Potenciais Pós-Sinápticos Inibidores , Proteínas Luminescentes/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Transgênicos , Medula Espinal/citologia , Transmissão Sináptica/fisiologia
15.
Brain Res ; 1345: 19-27, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20580693

RESUMO

Lidocaine hydrochloride (LC-HCl) is widely used as a local anesthetic, while various adverse effects of LC-HCl, such as seizures have also been reported. Lidocaine is reported to inhibit various channels and receptors including GABA(A) receptors. Although the GABA(A) receptor-mediated response depends on Cl(-) equilibrium potential (E(Cl)), little is known about the effect of LC-HCl on E(Cl). In the present study, we investigated the effect of LC-HCl on GABA-induced currents in cultured rat hippocampal neurons with gramicidin-perforated patch-clamp recording which is known to keep the intracellular Cl(-) concentration intact. LC-HCl inhibited outward GABA-induced currents with depolarizing shift of the GABA reversal potential (E(GABA)). The LC-HCl-induced positive E(GABA) shift was not observed with conventional whole-cell patch-clamp method which cannot retain intact intracellular Cl(-) concentration. The LC-HCl action on E(GABA) was inhibited by either furosemide, a blocker of both Na(+)-K(+)-Cl(-) cotransporter (NKCC) and K(+)-Cl(-) cotransporter (KCC), or an increase in extracellular K(+) concentrations. Neither bumetanide, a specific inhibitor of NKCC, nor Na(+)-free external solution had any effect on the LC-HCl-induced E(GABA) shift. QX-314, a membrane impermeable lidocaine derivative, failed to shift E(GABA) to positive potential. Furthermore, LC-HCl caused a depolarizing shift of E(GABA) in cultured GT1-7 cells expressing KCC2 but failed to change E(GABA) in GT1-7 cells without expression of KCC2. These results suggest that the LC-HCl-induced positive E(GABA) shift is due to a blockade of KCC2. Together with the direct LC-HCl action to GABA(A) receptors, the positive E(GABA) shift induced by LC-HCl reduces the GABAergic inhibition in the central nervous system.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cloretos/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/deficiência , Simportadores/metabolismo , Cotransportadores de K e Cl-
16.
J Physiol ; 587(Pt 23): 5709-22, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19840999

RESUMO

Locus coeruleus (LC) noradrenergic neurons are implicated in a variety of functions including the regulation of vigilance and the modulation of sensory processing. Thyrotropin-releasing hormone (TRH) is an endogenous neuropeptide that induces a variety of behavioural changes including arousal and antinociception. In the present study, we explored whether the activity of LC noradrenergic neurons is modulated by TRH. Using current-clamp recording from isolated rat LC neurons, we found that TRH increased the firing rate of spontaneous action potentials. The TRH action was mimicked by TRH analogues including taltirelin and TRH-gly. In voltage-clamp recording at a holding potential of 50 mV, TRH produced an inward current associated with a decrease in the membrane K+ conductance. This current was inhibited by the TRH receptor antagonist chlordiazepoxide. Following inhibition of the pH-sensitive K+ conductance by extracellular acidification, the TRH response was fully inhibited. The TRH-induced current was also inhibited by the phospholipase C (PLC) inhibitor U-73122, but not by the protein kinase C inhibitor chelerythrine nor by chelation of intracellular Ca2+ by BAPTA. The recovery from the facilitatory action of TRH on the spike frequency was markedly inhibited by a high concentration of wortmannin. These results suggest that TRH activates LC noradrenergic neurons by decreasing an acid-sensitive K+ conductance via PLC-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate. The present findings demonstrate that TRH activates LC neurons and characterize the underlying signalling mechanisms. The action of TRH on LC neurons may influence a variety of CNS functions related to the noradrenergic system which include arousal and analgesia.


Assuntos
Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Norepinefrina/fisiologia , Hormônio Liberador de Tireotropina/farmacologia , Potenciais de Ação , Anestésicos Locais/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Clordiazepóxido/farmacologia , Eletrofisiologia , Hipnóticos e Sedativos/farmacologia , Locus Cerúleo/citologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/antagonistas & inibidores , Soluções , Tetrodotoxina/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...