Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(1): 704-710, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33400539

RESUMO

Although water ice has been widely accepted to carry a positive charge via the transfer of excess protons through a hydrogen-bonded system, ice was recently found to be a negative charge conductor upon simultaneous exposure to electrons and ultraviolet photons at temperatures below 50 K. In this work, the mechanism of electron delivery was confirmed experimentally by both measuring currents through ice and monitoring photodissociated OH radicals on ice by using a novel method. The surface OH radicals significantly decrease upon the appearance of negative current flow, indicating that the electrons are delivered by proton-hole (OH-) transfer in ice triggered by OH- production on the surface. The mechanism of proton-hole transfer was rationalized by density functional theory calculations.

2.
Rapid Commun Mass Spectrom ; 32(23): 1991-1998, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30153343

RESUMO

RATIONALE: Sulfur is widely distributed in nature, and sulfur isotopic measurements have been applied to elucidate the origin and transport of sulfuric compounds in the lithosphere, biosphere, and atmosphere. Analyses of samples containing small amounts of sulfur, such as the Antarctic ice core samples analyzed herein, require a high-sensitivity analytical method. METHODS: We developed a high-sensitivity sulfur isotopic ratio (δ34 S value) analytical system equipped with an elemental analyzer, a cryo-flow device, and an isotope ratio mass spectrometer, and established a measurement and calibration procedure. RESULTS: Using this system, we precisely measured the δ34 S values of samples containing 5-40 nmol sulfate. Test runs were performed on samples from the Antarctic shallow ice core DF01, and the data obtained were consistent with those obtained by previous studies that reported δ34 S values for Antarctic snow and ice samples of more than 200 g (containing more than 150 nmol sulfate). Among the analyzed samples, one showed a peak sulfate concentration in its depth profile that is considered to have resulted from a large volcanic eruption. The δ34 S value obtained at that depth in the sample was distinct from values at other depths and consistent with reported values for volcanic sulfates. CONCLUSIONS: The analytical system developed herein is a powerful tool for trace sulfur isotopic analyses. The results obtained from the DF01 ice core samples are the first step towards elucidating high-time-resolution (less than 1 year) paleo-environmental changes by sulfur isotopic analyses.

3.
J Chem Phys ; 144(22): 224306, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27306006

RESUMO

We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...