Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 102(1): 155-171, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36226864

RESUMO

We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.


Assuntos
Carbono , Peixes , Animais , Isótopos de Carbono/análise , Carbono/análise , Cadeia Alimentar , Salmão , Aminoácidos , California , Isótopos de Nitrogênio/análise
2.
Oecologia ; 193(4): 827-842, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32857190

RESUMO

Hydrogen isotope (δ2H) analysis has been routinely used as an ecological tracer for animal movement and migration, yet a biochemical understanding of how animals incorporate this element in the synthesis of tissues is poorly resolved. Here, we apply a new analytical tool, amino acid (AA) δ2H analysis, in a controlled setting to trace the influence of drinking water and dietary macromolecules on the hydrogen in muscle tissue. We varied the δ2H of drinking water and the proportions of dietary protein and carbohydrates with distinct hydrogen and carbon isotope compositions fed to house mice among nine treatments. Our results show that hydrogen in the non-essential (AANESS) and essential (AAESS) AAs of mouse muscle is not readily exchanged with body water, but rather patterns among these compounds can be described through consideration of the major biochemical pathway(s) used by organisms to synthesize or route them from available sources. Dietary carbohydrates contributed more hydrogen than drinking water to the synthesis of AANESS in muscle. While neither drinking water nor dietary carbohydrates directly contributed to muscle AAESS, we did find that a minor but measurable proportion (10-30%) of the AAESS in muscle was synthesized by the gut microbiome using hydrogen and carbon from dietary carbohydrates. δ2H patterns among individual AAs in mice muscle are similar to those we previously reported for bacteria, which provides additional support that this approach may allow for the simultaneous analysis of different AAs that are more influenced by drinking water (AANESS) versus dietary (AAESS) sources of hydrogen.


Assuntos
Aminoácidos , Água , Animais , Isótopos de Carbono , Proteínas Alimentares , Hidrogênio , Camundongos , Isótopos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...