Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 237: 170-83, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23395860

RESUMO

The inferior colliculus (IC) integrates ascending auditory input from the lower brainstem and descending input from the auditory cortex. Understanding how IC cells integrate these inputs requires identification of their synaptic arrangements. We describe excitatory synapses in the dorsal cortex, central nucleus, and lateral cortex of the IC (ICd, ICc and IClc) in guinea pigs. We used electron microscopy (EM) and post-embedding anti-GABA immunogold histochemistry on aldehyde-fixed tissue from pigmented adult guinea pigs. Excitatory synapses were identified by round vesicles, asymmetric synaptic junctions, and gamma-aminobutyric acid-immunonegative (GABA-negative) presynaptic boutons. Excitatory synapses constitute ∼60% of the synapses in each IC subdivision. Three types can be distinguished by presynaptic profile area and number of mitochondrial profiles. Large excitatory (LE) boutons are more than 2 µm(2) in area and usually contain five or more mitochondrial profiles. Small excitatory (SE) boutons are usually less than 0.7 µm(2) in area and usually contain 0 or 1 mitochondria. Medium excitatory (ME) boutons are intermediate in size and usually contain 2 to 4 mitochondria. LE boutons are mostly confined to the ICc, while the other two types are present throughout the IC. Dendritic spines are the most common target of excitatory boutons in the IC dorsal cortex, whereas dendritic shafts are the most common target in other IC subdivisions. Finally, each bouton type terminates on both gamma-aminobutyric acid-immunopositive (GABA+) and GABA-negative (i.e., glutamatergic) targets, with terminations on GABA-negative profiles being much more frequent. The ultrastructural differences between the three types of boutons presumably reflect different origins and may indicate differences in postsynaptic effect. Despite such differences in origins, each of the bouton types contact both GABAergic and non-GABAergic IC cells, and could be expected to activate both excitatory and inhibitory IC circuits.


Assuntos
Colículos Inferiores , Microscopia Imunoeletrônica , Neurônios/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Cobaias , Colículos Inferiores/citologia , Colículos Inferiores/metabolismo , Colículos Inferiores/ultraestrutura , Masculino , NADPH Desidrogenase/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura
2.
Neuroscience ; 161(2): 578-88, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19358878

RESUMO

In the natural acoustic environment sounds frequently arrive at the two ears in quick succession. The responses of a cortical neuron to acoustic stimuli can be dramatically altered, usually suppressed, by a preceding sound. The purpose of this study was to determine if the binaural interaction evoked by a preceding sound is involved in subsequent suppressive interactions observed in auditory cortex neurons. Responses of neurons in the primary auditory cortex (AI) exhibiting binaural suppressive interactions (EO/I) were studied in barbiturate-anesthetized cats. For the majority (72.5%) of EO/I neurons studied, the response to a monaural contralateral stimulus was suppressed by a preceding monaural contralateral stimulus, but was not changed by a preceding monaural ipsilateral stimulus. For this subset of EO/I neurons, when a monaural contralateral stimulus was preceded by a binaural stimulus, the level of both the ipsilateral and the contralateral component of the binaural stimulus influenced the response to the subsequent monaural contralateral stimulus. When the contralateral level of the binaural stimulus was constant, increasing its ipsilateral level decreased the suppression of the response to the subsequent monaural contralateral stimulus. When the ipsilateral level of the binaural stimulus was constant, increasing its contralateral level increased the suppression of the response to the subsequent monaural contralateral stimulus. These results demonstrate that the sequential inhibition of responses of AI neurons is a function of the product of a preceding binaural interaction. The magnitude of the response to the contralateral stimulus is related to, but not determined by the magnitude of the response to the preceding binaural stimulus. Possible mechanisms of this sequential interaction are discussed.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Vias Auditivas , Gatos , Lateralidade Funcional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...