Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 127(12): e2022JA030721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37032657

RESUMO

The properties and acceleration mechanisms of electrons (<200 keV) associated with a pair of tailward traveling flux ropes and accompanied reconnection X-lines in Earth's plasma sheet are investigated with MMS measurements. Energetic electrons are enhanced on both boundaries and core of the flux ropes. The power-law spectra of energetic electrons near the X-lines and in flux ropes are harder than those on flux rope boundaries. Theoretical calculations show that the highest energy of adiabatic electrons is a few keV around the X-lines, tens of keV immediately downstream of the X-lines, hundreds of keV on the flux rope boundaries, and a few MeV in the flux rope cores. The X-lines cause strong energy dissipation, which may generate the energetic electron beams around them. The enhanced electron parallel temperature can be caused by the curvature-driven Fermi acceleration and the parallel electric potential. Betatron acceleration due to the magnetic field compression is strong on flux rope boundaries, which enhances energetic electrons in the perpendicular direction. Electrons can be trapped between the flux rope pair due to mirror force and parallel electric potential. Electrostatic structures in the flux rope cores correspond to potential drops up to half of the electron temperature. The energetic electrons and the electron distribution functions in the flux rope cores are suggested to be transported from other dawn-dusk directions, which is a 3-dimensional effect. The acceleration and deceleration of the Betatron and Fermi processes appear alternately indicating that the magnetic field and plasma are turbulent around the flux ropes.

2.
Sci Rep ; 10(1): 2120, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034265

RESUMO

Recent genomic studies on cancer tissues obtained during rapid autopsy have provided insights into the clonal evolution and heterogeneity of cancer. However, post-mortem blood has not been subjected to genetic analyses in relation to cancer. We first confirmed that substantial quantities of cell-free DNA were present in the post-mortem plasma of 12 autopsy cases. Then, we focused on a pilot case of prostate cancer with multiple metastases for genetic analyses. Whole-exome sequencing of post-mortem plasma-derived cell-free DNA and eight frozen metastatic cancer tissues collected during rapid autopsy was performed, and compared their mutational statuses. The post-mortem plasma cell-free DNA was successfully sequenced and 344 mutations were identified. Of these, 160 were detected in at least one of the metastases. Further, 99% of the mutations shared by all metastases were present in the plasma. Sanger sequencing of 30 additional formalin-fixed metastases enabled us to map the clones harboring mutations initially detected only in the plasma. In conclusion, post-mortem blood, which is usually disposed of during conventional autopsies, can provide valuable data if sequenced in detail, especially regarding cancer heterogeneity. Furthermore, post-mortem plasma cell-free DNA sequencing (liquid autopsy) can be a novel platform for cancer research and a tool for genomic pathology.


Assuntos
Autopsia/métodos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Neoplasias/patologia , Plasma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Testes Genéticos/métodos , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Projetos Piloto , Estudo de Prova de Conceito , Sequenciamento do Exoma/métodos
3.
J Geophys Res Space Phys ; 124(2): 1173-1186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31008008

RESUMO

The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail.

4.
J Geophys Res Space Phys ; 123(2): 1260-1278, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938154

RESUMO

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

5.
J Geophys Res Space Phys ; 123(8): 6457-6477, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31681521

RESUMO

Ultralow frequency (ULF) waves play a fundamental role in the dynamics of the inner magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion, and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the Magnetospheric Multiscale spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSS compresses the dayside magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner magnetospheric and radiation belt dynamics.

6.
Phys Rev Lett ; 118(17): 175101, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498691

RESUMO

An in situ measurement at the magnetopause shows that the quadrupole pattern of the Hall magnetic field, which is commonly observed in a symmetric reconnection, is still evident in an asymmetric component reconnection, but the two quadrants adjacent to the magnetosphere are strongly compressed into the electron scale and the widths of the remaining two quadrants are still ion scale. The bipolar Hall electric field pattern generally created in a symmetric reconnection is replaced by a unipolar electric field within the electron-scale quadrants. Furthermore, it is concluded that the spacecraft directly passed through the inner electron diffusion region based on the violation of the electron frozen-in condition, the energy dissipation, and the slippage between the electron flow and the magnetic field. Within the inner electron diffusion region, magnetic energy was released and accumulated simultaneously, and it was accumulated in the perpendicular directions while dissipated in the parallel direction. The localized thinning of the current sheet accounts for the energy accumulation in a reconnection.

7.
Earth Planets Space ; 69(1): 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009832

RESUMO

We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.Graphical AbstractMultispacecraft observations of dipolarization (left panel). Magnetic field component normal to the current sheet (BZ) observed in the night side magnetosphere are plotted from post-midnight to premidnight region: a GOES 13, b Van Allen Probe-A, c GOES 14, d GOES 15, e MMS3, g Geotail, h Cluster 1, together with f a combined product of energy spectra of electrons from MMS1 and MMS3 and i auroral electrojet indices. Spacecraft location in the GSM X-Y plane (upper right panel). Colorcoded By disturbances around the reconnection jets from the MHD simulation of the reconnection by Birn and Hesse (1996) (lower right panel). MMS and GOES 14-15 observed disturbances similar to those at the location indicated by arrows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...