Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Chem Ecol ; 50(1-2): 71-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030933

RESUMO

Larvae of the Salicaceae-adapted Notodontidae have developed a unique mechanism to metabolize the chemical defenses of their Salicaceae host plants. Salicinoids and salicortinoids are enzymatically transformed into salicyloyl, benzoyl and mixed salicyloyl-benzoyl quinates. The source of quinates and benzoates was previously unknown. To elucidate the origin of quinate and benzoate in the metabolic end-products, we fed Cerura vinula caterpillars with 13C-labelled poplar defense compounds. Caffeoylquinic acids (CQAs), such as chlorogenic acid, neochlorogenic acid and their methyl esters, were identified as the source of quinates in the caterpillar's metabolism. Benzoyl substituents in the quinate end-products were found to originate from compounds such as tremulacin or trichocarpin. Salicaceae-adapted Notodontidae caterpillars have the ability to overcome their host plant's chemical defense by metabolizing CQAs and salicinoids, both abundant defense compounds in Salicacea plants, by a strategy of transformation and recombination. We believe that our study opens up avenues for understanding salicortinoid biotransformation at the enzymatic level.


Assuntos
Herbivoria , Mariposas , Ácido Quínico/análogos & derivados , Animais , Ácido Quínico/análise , Folhas de Planta/química
2.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932529

RESUMO

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Assuntos
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812727

RESUMO

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Assuntos
Magnoliopsida , Magnoliopsida/metabolismo , Benzoxazinas/metabolismo , Poaceae/metabolismo , Redes e Vias Metabólicas/genética , Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
4.
Plant Physiol ; 194(1): 329-346, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584327

RESUMO

Aldoximes are well-known metabolic precursors for plant defense compounds such as cyanogenic glycosides, glucosinolates, and volatile nitriles. They are also defenses themselves produced in response to herbivory; however, it is unclear whether aldoximes can be stored over a longer term as defense compounds and how plants protect themselves against the potential autotoxic effects of aldoximes. Here, we show that the Neotropical myrmecophyte tococa (Tococa quadrialata, recently renamed Miconia microphysca) accumulates phenylacetaldoxime glucoside (PAOx-Glc) in response to leaf herbivory. Sequence comparison, transcriptomic analysis, and heterologous expression revealed that 2 cytochrome P450 enzymes, CYP79A206 and CYP79A207, and the UDP-glucosyltransferase UGT85A123 are involved in the formation of PAOx-Glc in tococa. Another P450, CYP71E76, was shown to convert PAOx to the volatile defense compound benzyl cyanide. The formation of PAOx-Glc and PAOx in leaves is a very local response to herbivory but does not appear to be regulated by jasmonic acid signaling. In contrast to PAOx, which was only detectable during herbivory, PAOx-Glc levels remained high for at least 3 d after insect feeding. This, together with the fact that gut protein extracts of 3 insect herbivore species exhibited hydrolytic activity toward PAOx-Glc, suggests that the glucoside is a stable storage form of a defense compound that may provide rapid protection against future herbivory. Moreover, the finding that herbivory or pathogen elicitor treatment also led to the accumulation of PAOx-Glc in 3 other phylogenetically distant plant species suggests that the formation and storage of aldoxime glucosides may represent a widespread plant defense response.


Assuntos
Glucosídeos , Herbivoria , Glucosídeos/metabolismo , Nitrilas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oximas/metabolismo , Folhas de Planta/metabolismo
5.
PLoS Biol ; 21(2): e3001887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802386

RESUMO

Outbreaks of the Eurasian spruce bark beetle (Ips typographus) have decimated millions of hectares of conifer forests in Europe in recent years. The ability of these 4.0 to 5.5 mm long insects to kill mature trees over a short period has been sometimes ascribed to two main factors: (1) mass attacks on the host tree to overcome tree defenses and (2) the presence of fungal symbionts that support successful beetle development in the tree. While the role of pheromones in coordinating mass attacks has been well studied, the role of chemical communication in maintaining the fungal symbiosis is poorly understood. Previous evidence indicates that I. typographus can distinguish fungal symbionts of the genera Grosmannia, Endoconidiophora, and Ophiostoma by their de novo synthesized volatile compounds. Here, we hypothesize that the fungal symbionts of this bark beetle species metabolize spruce resin monoterpenes of the beetle's host tree, Norway spruce (Picea abies), and that the volatile products are used as cues by beetles for locating breeding sites with beneficial symbionts. We show that Grosmannia penicillata and other fungal symbionts alter the profile of spruce bark volatiles by converting the major monoterpenes into an attractive blend of oxygenated derivatives. Bornyl acetate was metabolized to camphor, and α- and ß-pinene to trans-4-thujanol and other oxygenated products. Electrophysiological measurements showed that I. typographus possesses dedicated olfactory sensory neurons for oxygenated metabolites. Both camphor and trans-4-thujanol attracted beetles at specific doses in walking olfactometer experiments, and the presence of symbiotic fungi enhanced attraction of females to pheromones. Another co-occurring nonbeneficial fungus (Trichoderma sp.) also produced oxygenated monoterpenes, but these were not attractive to I. typographus. Finally, we show that colonization of fungal symbionts on spruce bark diet stimulated beetles to make tunnels into the diet. Collectively, our study suggests that the blends of oxygenated metabolites of conifer monoterpenes produced by fungal symbionts are used by walking bark beetles as attractive or repellent cues to locate breeding or feeding sites containing beneficial microbial symbionts. The oxygenated metabolites may aid beetles in assessing the presence of the fungus, the defense status of the host tree and the density of conspecifics at potential feeding and breeding sites.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Feminino , Monoterpenos/análise , Monoterpenos/metabolismo , Árvores/microbiologia , Cânfora/análise , Cânfora/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Casca de Planta/microbiologia , Melhoramento Vegetal , Besouros/fisiologia , Picea/química , Picea/metabolismo , Picea/microbiologia , Feromônios/metabolismo
6.
J Infect Chemother ; 29(1): 43-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36162645

RESUMO

INTRODUCTION: Legionella disease can manifest as severe respiratory tract infection with a high mortality rate and is sometimes associated with a hospital outbreak by a contaminated water supply. A patient with breast cancer admitted about a month before. High fever was observed 18 days after admission and the Legionella antigen test showed the positive result. METHODS: Due to the incidence of Legionella infection, we demonstrated the active surveillance of Legionella contamination in the entire hospital. RESULTS: Cultures of her environmental samples revealed that hot water in two bathrooms were contaminated with Legionella. In our hospital, the hot water is heated and pumped up on the roof and distributed to each room. The contaminated bathrooms were related to the same plumbing. Therefore, we further collected samples throughout the hot water system. Legionella was not detected in the central part of the system. However, we detected Legionella in the hot water sampled from other five rooms, which were also associated with the same plumbing of the two bathrooms. The temperature and chlorine concentration of the hot water were not high enough to inactivate Legionella at the end of the plumbing. After the adjustment of the water temperature and chlorine concentration, Legionella became undetectable. Our prompt and active surveillance successfully identified the plumbing of the hot water system as the source of Legionella contamination and took precautions against future outbreaks. CONCLUSIONS: Monitoring of water temperature and chloride concentration at the end of the hot water circulation is important to prevent nosocomial Legionella disease.


Assuntos
Infecção Hospitalar , Legionella pneumophila , Legionella , Humanos , Cloro , Microbiologia da Água , Abastecimento de Água , Hospitais , Infecção Hospitalar/prevenção & controle , Monitoramento Ambiental , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-38229458

RESUMO

Frequent mutations of SARS-CoV-2 change the strain more transmissible, leading to the pandemic in worldwide. We detected Y453F substitution on Omicron strain, isolated from a Japanese patient in July 2022. While Y453F substitution was identified B1.1.298 lineage in Netherlands and Denmark in 2020, the substitution has not been reported in Omicron strain especially in Japan. Y453F substitution is associated with higher viral infectivity because it is sited in the receptor-binding domain (RBD), and Y453F substitution contributes to increase binding affinity to angiotensin converting enzyme 2 (ACE2). Additionally, Y453F substitution has been reported to escape human leukocyte antigen (HLA), which is known to recognize non-self-antigens in virus-infected cells as cellular immunity, so it should be closely monitored.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Japão , Antígenos de Histocompatibilidade Classe II , Imunidade Celular
8.
Angew Chem Int Ed Engl ; 61(48): e202210934, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36198083

RESUMO

Medium-chain alcohol dehydrogenases (ADHs) comprise a highly conserved enzyme family that catalyse the reversible reduction of aldehydes. However, recent discoveries in plant natural product biosynthesis suggest that the catalytic repertoire of ADHs has been expanded. Here we report the crystal structure of dihydroprecondylocarpine acetate synthase (DPAS), an ADH that catalyses the non-canonical 1,4-reduction of an α,ß-unsaturated iminium moiety. Comparison with structures of plant-derived ADHs suggest the 1,4-iminium reduction does not require a proton relay or the presence of a catalytic zinc ion in contrast to canonical 1,2-aldehyde reducing ADHs that require the catalytic zinc and a proton relay. Furthermore, ADHs that catalysed 1,2-iminium reduction required the presence of the catalytic zinc and the loss of the proton relay. This suggests how the ADH active site can be modified to perform atypical carbonyl reductions, providing insight into how chemical reactions are diversified in plant metabolism.


Assuntos
Álcool Desidrogenase , Prótons , Álcool Desidrogenase/metabolismo , Plantas/metabolismo , Etanol , Catálise , Zinco/metabolismo
9.
J Am Chem Soc ; 144(43): 19673-19679, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36240425

RESUMO

Nature uses cycloaddition reactions to generate complex natural product scaffolds. Dehydrosecodine is a highly reactive biosynthetic intermediate that undergoes cycloaddition to generate several alkaloid scaffolds that are the precursors to pharmacologically important compounds such as vinblastine and ibogaine. Here we report how dehydrosecodine can be subjected to redox chemistry, which in turn allows cycloaddition reactions with alternative regioselectivity. By incubating dehydrosecodine with reductase and oxidase biosynthetic enzymes that act upstream in the pathway, we can access the rare pseudoaspidosperma alkaloids pseudo-tabersonine and pseudo-vincadifformine, both in vitro and by reconstitution in the plant Nicotiana benthamiana from an upstream intermediate. We propose a stepwise mechanism to explain the formation of the pseudo-tabersonine scaffold by structurally characterizing enzyme intermediates and by monitoring the incorporation of deuterium labels. This discovery highlights how plants use redox enzymes to enantioselectively generate new scaffolds from common precursors.


Assuntos
Alcaloides , Aspidosperma , Reação de Cicloadição , Oxirredução , Reciclagem
10.
Plant Cell ; 34(8): 2925-2947, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35532172

RESUMO

Salicinoids are salicyl alcohol-containing phenolic glycosides with strong antiherbivore effects found only in poplars and willows. Their biosynthesis is poorly understood, but recently a UDP-dependent glycosyltransferase, UGT71L1, was shown to be required for salicinoid biosynthesis in poplar tissue cultures. UGT71L1 specifically glycosylates salicyl benzoate, a proposed salicinoid intermediate. Here, we analyzed transgenic CRISPR/Cas9-generated UGT71L1 knockout plants. Metabolomic analyses revealed substantial reductions in the major salicinoids, confirming the central role of the enzyme in salicinoid biosynthesis. Correspondingly, UGT71L1 knockouts were preferred to wild-type by white-marked tussock moth (Orgyia leucostigma) larvae in bioassays. Greenhouse-grown knockout plants showed substantial growth alterations, with decreased internode length and smaller serrated leaves. Reinserting a functional UGT71L1 gene in a transgenic rescue experiment demonstrated that these effects were due only to the loss of UGT71L1. The knockouts contained elevated salicylate (SA) and jasmonate (JA) concentrations, and also had enhanced expression of SA- and JA-related genes. SA is predicted to be released by UGT71L1 disruption, if salicyl salicylate is a pathway intermediate and UGT71L1 substrate. This idea was supported by showing that salicyl salicylate can be glucosylated by recombinant UGT71L1, providing a potential link of salicinoid metabolism to SA and growth impacts. Connecting this pathway with growth could imply that salicinoids are under additional evolutionary constraints beyond selective pressure by herbivores.


Assuntos
Mariposas , Populus , Animais , Sistemas CRISPR-Cas/genética , Ciclopentanos/metabolismo , Herbivoria , Mariposas/genética , Mariposas/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
11.
Eur J Med Genet ; 65(3): 104446, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35134569

RESUMO

Microdeletions encompassing the 2p14 region have been reported to cause a novel microdeletion syndrome, characterised by mild intellectual disability (ID) and language impairment (LI), usually showing no congenital malformations or severe dysmorphisms. Actin-related protein 2 (ACTR2) and Ras-related protein Rab-1A (RAB1A) genes present in this region have been suggested to be associated with ID and/or LI pathogenesis on the basis of a few singleton cases with 2p14 microdeletions, although the effects of other deleted genes could not be ruled out. Here, we describe the clinical and molecular cytogenetic characterisation of a three-generation Japanese family comprising six individuals carrying a 144-kb microdeletion at the 2p14 locus, which disrupted two genes, ACTR2 and RAB1A, and co-segregated with ID and LI. The 5'- and 3'-deletion breakpoints were mapped within two flanking Alu repeat elements at 30-bp perfect homology, and thus suggested homologous recombination between the Alu elements as an underlying mechanism for the deletion event. Since ACTR2 is the only gene located in the minimal overlapping interval among the cases reported in the present study and those reported previously with 2p14 microdeletions, and ACTR2 exhibits strong intolerance for loss-of-function, our findings further support the notion that ACTR2, a key component involved in the branching of cytoskeletal actin networks, is probably responsible for the aetiology of LI in 2p14 microdeletion syndrome.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Proteína 2 Relacionada a Actina/genética , Deleção Cromossômica , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Síndrome
12.
Plant Physiol ; 188(1): 167-190, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718797

RESUMO

Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.


Assuntos
Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/fisiologia , Flavonoides/metabolismo , Fusarium/patogenicidade , Metiltransferases/metabolismo , Zea mays/metabolismo , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Zea mays/microbiologia
13.
Org Lett ; 23(5): 1793-1797, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33625237

RESUMO

The enzymatic basis for quinine 1 biosynthesis was investigated. Transcriptomic data from the producing plant led to the discovery of three enzymes involved in the early and late steps of the pathway. A medium-chain alcohol dehydrogenase (CpDCS) and an esterase (CpDCE) yielded the biosynthetic intermediate dihydrocorynantheal 2 from strictosidine aglycone 3. Additionally, the discovery of an O-methyltransferase specific for 6'-hydroxycinchoninone 4 suggested the final step order to be cinchoninone 16/17 hydroxylation, methylation, and keto-reduction.


Assuntos
Metiltransferases/metabolismo , Quinina/química , Quinina/metabolismo , Alcaloides de Vinca/química , Hidroxilação , Estrutura Molecular
14.
New Phytol ; 229(4): 2288-2301, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124697

RESUMO

Olive (Olea europaea) is an important crop in Europe, with high cultural, economic and nutritional significance. Olive oil flavor and quality depend on phenolic secoiridoids, but the biosynthetic pathway of these iridoids remains largely uncharacterized. We discovered two bifunctional cytochrome P450 enzymes, catalyzing the rare oxidative C-C bond cleavage of 7-epi-loganin to produce oleoside methyl ester (OeOMES) and secoxyloganin (OeSXS), both through a ketologanin intermediary. Although these enzymes are homologous to the previously reported Catharanthus roseus secologanin synthase (CrSLS), the substrate and product profiles differ. Biochemical assays provided mechanistic insights into the two-step OeOMES and CrSLS reactions. Model-guided mutations of OeOMES changed the product profile in a predictable manner, revealing insights into the molecular basis for this change in product specificity. Our results suggest that, in contrast to published hypotheses, in planta production of secoxy-iridoids is secologanin-independent. Notably, sequence data of cultivated and wild olives point to a relation between domestication and OeOMES expression. Thus, the discovery of this key biosynthetic gene suggests a link between domestication and secondary metabolism, and could potentially be used as a genetic marker to guide next-generation breeding programs.


Assuntos
Olea , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Europa (Continente) , Iridoides/análise , Olea/genética , Azeite de Oliva , Estresse Oxidativo , Melhoramento Vegetal
15.
Plant Physiol ; 183(1): 137-151, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32098786

RESUMO

Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus × canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed.


Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Sulfotransferases/metabolismo , Álcoois Benzílicos/metabolismo , Glucosídeos/metabolismo , Hidroquinonas/metabolismo , Proteínas de Plantas/genética , Populus/genética , Interferência de RNA , Sulfotransferases/genética
16.
J Hum Hypertens ; 34(2): 125-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31481698

RESUMO

The aim of this study is to show the combined effect of weight gain within normal weight range in adulthood and parental HT on the prevalence of HT. The study subjects were 44,998 individuals (19,039 men and 25,959 women) with normal weight (body mass index [BMI] 18.5-24.9) aged 35-69 years who participated in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. They were categorized into six groups by weight gain from age 20 years (<10 kg, and ≥10 kg) and by the number of parents having HT (no parent, one parent, and both parents). Odds ratios for HT were estimated after adjustment for age, sex, current BMI, estimated daily sodium intake, and other confounding factors. The prevalence of HT (31.5% in total subjects) gradually increased with greater weight gain from age 20 years and with greater number of parents with HT. Subjects who gained weight ≥10 kg and having both parents with HT showed the highest risk of having HT compared with those who gained weight <10 kg without parental HT (59.8% vs. 24.9%, odds ratio 4.25, 95% CI 3.53-5.13 after adjustment). This association was similarly observed in any category of age, sex, and BMI. Subjects who gained weight within normal range of BMI and having one or both parent(s) with HT showed the higher risk of having HT independent of their attained BMI in their middle ages. Thus, subjects having parent(s) with HT should avoid gaining their weight during adulthood, even within normal range of BMI, to reduce the risk of having HT.


Assuntos
Hipertensão , Aumento de Peso , Adulto , Índice de Massa Corporal , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Pais , Prevalência , Valores de Referência , Fatores de Risco , Adulto Jovem
17.
Inorg Chem ; 58(14): 9181-9186, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247815

RESUMO

We report on the formation of a new icosahedral quasicrystal (iQC) in the Au-Sn-Yb alloy system. This iQC has a primitive icosahedral lattice with a lattice constant aico of 0.5447(7) nm and a composition that was determined to be Au60.0Sn26.7Yb13.3. X-ray absorption spectroscopy measurement of the near Yb L3 edge demonstrates that the Yb valence in the iQC is an intermediate valence between divalent (4f14) and trivalent (4f13) at ambient pressure and was determined to be 2.18+. The results are compared to those for a corresponding 2/1 cubic approximant crystal. The formation of this new iQC is discussed in terms of the atomic size factor (δ) and the valence electron-to-atom ratio (e/a).

18.
J Med Genet ; 56(6): 396-407, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842224

RESUMO

BACKGROUND: Rett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES). METHODS: We performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria. RESULTS: Pathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2). CONCLUSIONS: Our study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Polimorfismo de Nucleotídeo Único
19.
Sci Rep ; 9(1): 102, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643196

RESUMO

Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4,045 Japanese individuals (2,060 cases and 1,985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10-9). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10-8). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC.


Assuntos
Glucosiltransferases/genética , Cirrose Hepática Biliar/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Z Naturforsch C J Biosci ; 73(1-2): 59-66, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29161234

RESUMO

(9Z)-Methyl 4-dihydrotrisporate B and (9Z)-methyl trisporate B, pheromones of Zygomycetes fungi, have been synthesized using Stille cross-coupling from previously described cyclohexenone precursors. Conducting the coupling without protection groups allowed for a short and stereospecific synthesis route of the late trisporoids. Stability studies for both the compounds revealed (9Z)-methyl trisporate B to be very unstable against UV irradiation.


Assuntos
Carotenoides/síntese química , Cicloexenos/síntese química , Ácidos Graxos Insaturados/síntese química , Fungos não Classificados/química , Fator de Acasalamento/síntese química , Terpenos/síntese química , Fungos não Classificados/metabolismo , Fator de Acasalamento/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...