Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(6): e0033823, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37377428

RESUMO

Phosphonate natural products are renowned for inhibitory activities which underly their development as antibiotics and pesticides. Although most phosphonate natural products have been isolated from Streptomyces, bioinformatic surveys suggest that many other bacterial genera are replete with similar biosynthetic potential. While mining actinobacterial genomes, we encountered a contaminated Mycobacteroides data set which included a biosynthetic gene cluster predicted to produce novel phosphonate compounds. Sequence deconvolution revealed that the contig containing this cluster, as well as many others, belonged to a contaminating Bacillus and is broadly conserved among multiple species, including the epiphyte Bacillus velezensis. Isolation and structure elucidation revealed a new di- and tripeptide composed of l-alanine and a C-terminal l-phosphonoalanine which we name phosphonoalamides E and F. These compounds exhibit broad-spectrum antibacterial activity, including strong inhibition against the agricultural pests responsible for vegetable soft rot (Erwinia rhapontici), onion rot (Pantoea ananatis), and American foulbrood (Paenibacillus larvae). This work expands our knowledge of phosphonate metabolism and underscores the importance of including underexplored microbial taxa in natural product discovery. IMPORTANCE Phosphonate natural products produced by bacteria have been a rich source of clinical antibiotics and commercial pesticides. Here, we describe the discovery of two new phosphonopeptides produced by B. velezensis with antibacterial activity against human and plant pathogens, including those responsible for widespread soft rot in crops and American foulbrood. Our results provide new insight on the natural chemical diversity of phosphonates and suggest that these compounds could be developed as effective antibiotics for use in medicine or agriculture.


Assuntos
Anti-Infecciosos , Bacillus , Produtos Biológicos , Organofosfonatos , Praguicidas , Humanos , Produtos Biológicos/química , Bacillus/genética , Bacillus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/genética , Genoma Bacteriano
2.
Biochim Biophys Acta Biomembr ; 1862(5): 183197, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958435

RESUMO

The bilayer phase transitions of medium-chain phosphatidylcholines with linear saturated acyl chains (Cn = 12, 13 and 14) were measured by high-pressure light-transmittance measurements and differential scanning calorimetry to investigate the formation of intermediate gel-liquid crystalline phase called Lx phase. The constructed phase diagrams showed that there existed a distinct region of the Lx phase between ripple gel (Pß') and liquid crystalline (Lα) phase for multilamellar vesicle bilayers of C12PC and C13PC. The Lx phase of the C12PC bilayer was metastable at all pressures and disappeared at a higher pressure. In the C13PC bilayer, the Lx phase was stable and also disappeared at a higher pressure but its region markedly shrunk. By contrast, the Lx phase was not detected for the C14PC bilayer. Effects of other factors such as vesicle size and solvent substitution on the Lx phase of the C13PC bilayer were also examined. A decrease in vesicle size and solvent substitution from water to 50 wt% ethylene glycol solution promoted the Lx-phase formation as opposed to the effects of acyl-chain elongation and pressurization. The fluorescence data of the C13PC bilayer with different vesicle sizes showed that the Lx phase is caused by the difference of local packing in the bilayer. Considering these facts, we concluded that the Lx phase is an intermediate gel-Lα phase that has gel-phase monolayers with negative curvature and Lα-phase monolayers with positive curvature. The formation mechanism of the Lx-phase in stacked bilayers and dispersed vesicles is also explainable by this difference in packing state.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Varredura Diferencial de Calorimetria , Etilenoglicol/química , Lecitinas/química , Transição de Fase , Pressão , Temperatura , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...