Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(11): 2984-2991, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35914182

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) and a devastating worldwide health concern. Development of safe and effective treatments is not only important for interventions during the current pandemic, but also for providing general treatment options moving forward. We have developed ensitrelvir, an antiviral compound that targets the 3C-like protease of SARS-CoV-2. In this study, a delayed-treatment mouse model was used to clarify the potential in vivo efficacy of ensitrelvir. METHODS: Female BALB/cAJcl mice of different ages were infected with the SARS-CoV-2 gamma strain (hCoV-19/Japan/TY7-501/2021) or mouse-adapted SARS-CoV-2 MA-P10 and then 24 h post-infection orally administered various doses of ensitrelvir or vehicle. Viral titres and RNA levels in the lungs were quantified using VeroE6/TMPRSS2 cells and RT-qPCR, respectively. Body weight loss, survival, lung weight, cytokine/chemokine production, nucleocapsid protein expression and lung pathology were evaluated to investigate the in vivo efficacy of ensitrelvir. RESULTS: Based on infectious viral titres and viral RNA levels in the lungs of infected mice, ensitrelvir reduced viral loads in a dose-dependent manner. The antiviral efficacy correlated with increased survival, reduced body weight loss, reduced pulmonary lesions and suppression of inflammatory cytokine/chemokine levels. CONCLUSIONS: This was the first evaluation of the in vivo anti-SARS-CoV-2 efficacy of ensitrelvir in a delayed-treatment mouse model. In this model, ensitrelvir demonstrated high antiviral potential and suppressed lung inflammation and lethality caused by SARS-CoV-2 infection. The findings support the continued clinical development of ensitrelvir as an antiviral agent to treat patients with COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Animais , Feminino , Camundongos , Antivirais/uso terapêutico , Antivirais/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão , SARS-CoV-2 , Redução de Peso
2.
J Mol Biol ; 429(8): 1262-1276, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28336404

RESUMO

The APOBEC3 (A3) family of cellular cytidine deaminases comprises seven members (A, B, C, D, F, G, and H) that potently inhibit retroviral replication. Human immunodeficiency virus type 1 (HIV-1) Vif is a small pleiotropic protein that specifically inactivates these enzymes, targeting them for ubiquitin-mediated proteasomal degradation. A3 Vif-interaction sites are presumed to fall into three distinct types: A3C/D/F, A3G, and A3H. To date, two types of A3G and A3C/D/F sites have been well characterized, whereas the A3H Vif-binding site remains poorly defined. Here, we explore the residues critical for the A3H-type Vif interaction. To avoid technical difficulties in performing experiments with human A3H haplotype II (hapII), which is relatively resistant to HIV-1 Vif, we employed its ortholog chimpanzee A3H (cA3H), which displays high Vif sensitivity, for a comparison of sensitivity with that of A3H hapII. The Vif susceptibility of A3H hapII-cA3H chimeras and their substitution mutants revealed a single residue at position 97 as a major determinant for the difference in their Vif sensitivities. We further surveyed critical residues by structure-guided mutagenesis using an A3H structural model and thus identified eight additional residues important for Vif sensitivity, which mapped to the α3 and α4 helices of A3H. Interestingly, this area is located on a surface adjacent to the A3G and A3C/D/F interfaces and is composed of negatively charged and hydrophobic patches. These findings suggest that HIV-1 Vif has evolved to utilize three dispersed surfaces for recognizing three types of interfaces on A3 proteins under certain structural constraints.


Assuntos
Aminoidrolases/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Aminoidrolases/química , Aminoidrolases/genética , Animais , Sítios de Ligação , Interações Hospedeiro-Patógeno , Humanos , Mutagênese , Pan troglodytes , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
3.
Front Microbiol ; 7: 61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870021

RESUMO

Darunavir (DRV) is one of the most powerful protease inhibitors (PIs) for treating human immunodeficiency virus type-1 (HIV-1) infection and presents a high genetic barrier to the generation of resistant viruses. However, DRV-resistant HIV-1 infrequently emerges from viruses exhibiting resistance to other protease inhibitors. To address this resistance, researchers have gathered genetic information on DRV resistance. In contrast, few structural insights into the mechanism underlying DRV resistance are available. To elucidate this mechanism, we determined the crystal structure of the ligand-free state of a protease with high-level DRV resistance and six DRV resistance-associated mutations (including I47V and I50V), which we generated by in vitro selection. This crystal structure showed a unique curling conformation at the flap regions that was not found in the previously reported ligand-free protease structures. Molecular dynamics simulations indicated that the curled flap conformation altered the flap dynamics. These results suggest that the preference for a unique flap conformation influences DRV binding. These results provide new structural insights into elucidating the molecular mechanism of DRV resistance and aid to develop PIs effective against DRV-resistant viruses.

4.
J Virol ; 90(2): 1034-47, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537685

RESUMO

UNLABELLED: The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE: HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.


Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Cristalografia por Raios X , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
5.
Nat Struct Mol Biol ; 19(10): 1005-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23001005

RESUMO

The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3, referred to as A3) proteins are cellular cytidine deaminases that potently restrict retrovirus replication. However, HIV-1 viral infectivity factor (Vif) counteracts the antiviral activity of most A3 proteins by targeting them for proteasomal degradation. To date, the structure of an A3 protein containing a Vif-binding interface has not been solved. Here, we report a high-resolution crystal structure of APOBEC3C and identify the HIV-1 Vif-interaction interface. Extensive structure-guided mutagenesis revealed the role of a shallow cavity composed of hydrophobic or negatively charged residues between the α2 and α3 helices. This region is distant from the DPD motif (residues 128-130) of APOBEC3G that participates in HIV-1 Vif interaction. These findings provide insight into Vif-A3 interactions and could lead to the development of new pharmacologic anti-HIV-1 compounds.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Citidina Desaminase/genética , Citosina Desaminase/química , HIV-1/genética , HIV-1/patogenicidade , Células HeLa/virologia , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Vírion/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
6.
Front Microbiol ; 3: 258, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22833741

RESUMO

Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus-host interactions and evolution, and present future perspectives on this technique.

7.
Front Microbiol ; 3: 250, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22787460

RESUMO

The human APOBEC3 (A3) family (A, B, C, DE, F, G, and H) comprises host defense factors that potently inhibit the replication of diverse retroviruses, retrotransposons, and the other viral pathogens. HIV-1 has a counterstrategy that includes expressing the Vif protein to abrogate A3 antiviral function. Without Vif, A3 proteins, particularly APOBEC3G (A3G) and APOBEC3F (A3F), inhibit HIV-1 replication by blocking reverse transcription and/or integration and hypermutating nascent viral cDNA. The molecular mechanisms of this antiviral activity have been primarily attributed to two biochemical characteristics common to A3 proteins: catalyzing cytidine deamination in single-stranded DNA (ssDNA) and a nucleic acid-binding capability that is specific to ssDNA or ssRNA. Recent advances suggest that unique property of A3G dimer/oligomer formations, is also important for the modification of antiviral activity. In this review article we summarize how A3 proteins, particularly A3G, inhibit viral replication based on the biochemical and structural characteristics of the A3G protein.

8.
Chem Pharm Bull (Tokyo) ; 56(3): 346-56, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310947

RESUMO

A series of 3-sulfenylazetidine derivatives 5a-f were synthesized via the ring-opening reactions of 1-azabicyclo[1.1.0]butane (ABB, 3) with thiols 4a-f in 50-92% yields. Treatment of ABB (3) with aromatic amines 9a-e and dibenzylamine (9f) in the presence of Mg(ClO4)2 afforded the corresponding 3-aminoazetidine derivatives 10a-f in 24-65% yields. N-Benzyl-3-bromoazetidine (13), which was obtained by the reaction of ABB (3) with benzyl bromide, gave 3-aliphatic amino-substituted azetidine derivatives 15a, b. Novel fluoroquinolones 7a-f, 11a-f, 16a, b and 25a-c were obtained by the introduction of these azetidine derivatives into the C7 position of a quinolone nucleus 6 and N1-heterocyclic quinolones 21a-c in 21-83% yields. Some of them exhibited a greater antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in comparison with that of clinically used fluoroquinolone, levofloxacin (LVFX).


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Azabicíclicos/química , Azetidinas/química , Quinolonas/síntese química , Quinolonas/farmacologia , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos
9.
Bioorg Med Chem Lett ; 17(4): 942-5, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17157008

RESUMO

The ring-opening reactions of 1-azabicyclo[1.1.0]butane 3 with thiols 6a-f gave 3-sulfenylazetidine derivatives 7a-f in 50-92% yields. Treatment of 3 with aromatic amines 11a-e and dibenzylamine 11f in the presence of Mg(ClO(4))(2) afforded the corresponding 3-aminoazetidine derivatives 12a-f in 24-53% yields. These azetidine derivatives were introduced into the C7 position of a quinolone nucleus 8 to afford the corresponding fluoroquinolones 9a-f and 13a-f in 21-83% yields. Some of them exhibited superior antibacterial activity against quinolone-susceptible MRSA in comparison with clinically used fluoroquinolones, such as levofloxacin, ciprofloxacin, and gatifloxacin.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Aza/química , Compostos Bicíclicos com Pontes/química , Quinolonas/síntese química , Quinolonas/farmacologia , Cristalografia por Raios X , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Modelos Moleculares , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...