Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 56: 101007, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797091

RESUMO

Arylacetamide deacetylase (AADAC) is involved in drug hydrolysis and lipid metabolism. In 23 human liver samples, no significant correlation was observed between AADAC mRNA (19.7-fold variation) and protein levels (137.6-fold variation), suggesting a significant contribution of post-transcriptional regulation to AADAC expression. The present study investigated whether AADAC is regulated by microRNA in the human liver and elucidate its biological significance. Computational analysis predicted two potential miR-222-3p recognition elements in the 3'-untranslated region (UTR) of AADAC. Luciferase assay revealed that the miR-222-3p recognition element was functional in downregulating AADAC expression. In HEK293 cells transfected with an AADAC expression plasmid containing 3'-UTR, miR-222-3p overexpression decreased AADAC protein level and activity, whereas miR-222-3p inhibition increased them. Similar results were observed in human hepatoma-derived Huh-1 cells endogenously expressing AADAC and HepaSH cells that are hepatocytes from chimeric mice with humanized livers. In individual human liver samples, AADAC protein levels inversely correlated with miR-222-3p levels. Overexpression of miR-222-3p resulted in increased lipid accumulation in Huh-1 cells, which was reversed by AADAC overexpression. In contrast, miR-222-3p inhibition decreased lipid accumulation, which was reversed by AADAC knockdown. In conclusion, we found that hepatic AADAC was downregulated by miR-222-3p, resulting in decreased drug hydrolysis and increased lipid accumulation.


Assuntos
Regulação para Baixo , Metabolismo dos Lipídeos , MicroRNAs , Animais , Humanos , Camundongos , Amidoidrolases/metabolismo , Amidoidrolases/genética , Hidrolases de Éster Carboxílico , Células HEK293 , Hidrólise , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Drug Metab Dispos ; 51(6): 733-742, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36927840

RESUMO

Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine. Nintedanib hydrolysis was detected in human liver microsomes (HLMs) (Clearance [CL int]: 102.8 ± 18.9 µL/min per mg protein) but not in small intestinal preparations. CES1 was suggested to be responsible for nintedanib hydrolysis according to experiments using recombinant hydrolases and hydrolase inhibitors as well as proteomic correlation analysis using 25 individual HLM. BIBF1202 glucuronidation in HLM (3.6 ± 0.3 µL/min per mg protein) was higher than that in human intestinal microsomes (1.5 ± 0.06 µL/min per mg protein). UGT1A1 and gastrointestinal UGT1A7, UGT1A8, and UGT1A10 were able to mediate BIBF1202 glucuronidation. The impact of UGT1A1 on glucuronidation was supported by the finding that liver microsomes from subjects homozygous for the UGT1A1*28 allele showed significantly lower activity than those from subjects carrying the wild-type UGT1A1 allele. Interestingly, BIBF1202-G was converted to BIBF1202 in HLS9 at 70-fold higher rates than the rates of BIBF1202 glucuronidation. An inhibition study and proteomic correlation analysis suggested that ß-glucuronidase is responsible for hepatic BIBF1202-G deglucuronidation. In conclusion, the major metabolic reactions of nintedanib in the human liver and intestine were quantitatively and thoroughly elucidated. This information could be helpful to understand the inter- and intraindividual variability in the efficacy of nintedanib. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to characterize the enzymes responsible for each step of nintedanib metabolism in the human body. This study found that ß-glucuronidase may contribute to BIBF1202-G deglucuronidation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteômica , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Hidrolases/metabolismo , Glucuronidase/metabolismo , Cinética
3.
Pharm Res ; 40(4): 863-871, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36002612

RESUMO

PURPOSE: Small extracellular vesicles (sEV) containing proteins and RNAs play important roles as intercellular signal mediators. A critical issue is that there are multiple methods to prepare sEV fractions. The purpose of this study was to examine whether cancer cell-derived sEV fractions prepared by different isolation methods show similar responses for the induction of inflammatory cytokines in macrophages. METHODS: sEV fractions from the conditioned medium of MCF-7 cells were prepared by ultracentrifugation (UC), the MagCapture Exosome Isolation Kit PS (PS), or the ExoQuick-TC kit (EQ). The mRNA levels of inflammatory cytokines in differentiated THP-1 cells treated with the sEV fractions were evaluated. RESULTS: The yields of sEV fractions obtained from 1 mL conditioned medium by UC, PS, or EQ were 3.2×108 particles (0.27 µg protein), 12.8×108 particles (0.87 µg protein) and 23.5 ×108 particles (4.50 µg protein), respectively. The average particle sizes in the UC, PS, and EQ fractions were 184.8 ± 1.8 nm, 157.8 ± 1.3 nm and 165.8 ± 1.1 nm, respectively. CD9 and CD81, markers of sEV, were most highly detected in the PS fraction, followed by the EQ and UC fractions. These results suggest that PS gave sEV with relatively high purity, and many protein contaminants appear to be included in the EQ fraction. The mRNA levels of inflammatory cytokines in THP-1 macrophages were most prominently increased by treatment with the UC fraction, followed by the EQ and PS fractions, suggesting that contaminants rather than sEV may largely induce an inflammatory response. CONCLUSION: The isolation method affects the evaluation of sEV function.


Assuntos
Vesículas Extracelulares , Humanos , Meios de Cultivo Condicionados/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Inflamação/metabolismo
4.
Noncoding RNA Res ; 6(3): 123-129, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34322648

RESUMO

Single nucleotide polymorphisms in genes encoding microRNAs (miRNA-SNPs) may affect the maturation steps of miRNAs or target mRNA recognition, leading to changes in the expression of target mRNAs to cause gain- or loss-of-function changes. Several miRNA-SNPs are known to be associated with the risk of diseases such as cancer. The purpose of this study was to comprehensively determine the miRNA-SNPs in Japanese individuals to evaluate the differences in allele frequencies between ethnicities by comparing data from the global population in the 1000 Genomes Project and differences between healthy subjects and cancer patients. We performed next-generation sequencing targeting genes encoding 1809 pre-miRNAs. As a result, 403 miRNA-SNPs (146 miRNA-SNPs per subject on average) were identified in 28 healthy Japanese subjects. We observed significant differences in the allele frequencies between ethnicities in 33 of the 403 miRNA-SNPs. The numbers of miRNA-SNPs per subject in 44 non-small cell lung cancer (NSCLC), 33 colorectal cancer (CRC), and 15 soft tissue sarcoma (STS) patients were almost equal to those in healthy subjects. Significant differences in allele frequencies were observed for 14, 11, and 9 miRNA-SNPs in NSCLC, CRC, and STS patients compared with the frequencies in healthy subjects, suggesting that these SNPs can be biomarkers of risk for each type of cancer assessed. In summary, we comprehensively characterized miRNA-SNPs in Japanese individuals and found differences in allele frequencies of several miRNA-SNPs between ethnicities and between healthy subjects and cancer patients. Studies investigating a larger number of subjects should be performed to confirm the potential of miRNA-SNPs as biomarkers of cancer risk.

5.
Drug Metab Pharmacokinet ; 39: 100397, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34171773

RESUMO

Recently, in addition to carboxylesterases (CESs), we found that arylacetamide deacetylase (AADAC) plays an important role in the metabolism of some clinical drugs. In this study, we screened for food-related natural compounds that could specifically inhibit human AADAC, CES1, or CES2. AADAC, CES1, and CES2 activities in human liver microsomes were measured using phenacetin, fenofibrate, and procaine as specific substrates, respectively. In total, 43 natural compounds were screened for their inhibitory effects on each of these enzymes. Curcumin and quercetin showed strong inhibitory effects against all three enzymes, whereas epicatechin, epicatechin gallate (ECg), and epigallocatechin gallate (EGCg) specifically inhibited AADAC. In particular, ECg and EGCg showed strong inhibitory effects on AADAC (IC50 values: 3.0 ± 0.5 and 2.2 ± 0.2 µM, respectively). ECg and EGCg also strongly inhibited AADAC-mediated rifampicin hydrolase activity in human liver microsomes with IC50 values of 2.2 ± 1.4 and 1.7 ± 0.4 µM, respectively, whereas it weakly inhibited p-nitrophenyl acetate hydrolase activity, which is catalyzed by AADAC, CES1, and CES2. Our results indicate that ECg and EGCg are potent inhibitors of AADAC.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Catequina/análogos & derivados , Curcumina , Quercetina , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/farmacocinética , Catequina/metabolismo , Catequina/farmacocinética , Curcumina/metabolismo , Curcumina/farmacocinética , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Hidrólise , Inativação Metabólica/fisiologia , Microssomos Hepáticos/metabolismo , Quercetina/metabolismo , Quercetina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...