Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 202(2): 162-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19962334

RESUMO

For quadrupolar nuclei with spin quantum numbers equal to 3/2, 5/2 and 7/2, the intensities of the NMR transitions in a single crystal are examined as a function of the rf excitation flip angle. Single-quantum NMR intensities are calculated using density matrix theory beginning under various non-equilibrium conditions and are compared with those determined experimentally. As a representative spin-3/2 system, the flip-angle dependence of the (23)Na NMR intensities of a single crystal of NaNO(3) was investigated beginning with the inversion of the populations associated with one of the satellite transitions. Subsequently, the populations of both satellite transitions were inverted using highly frequency-selective hyperbolic secant pulses. Calculated and experimental intensities are in good agreement. As an example of a spin-5/2 system, the flip-angle dependence of the (27)Al NMR transition intensities was determined using a single crystal of sapphire, Al(2)O(3), starting under different nuclear spin population conditions. The experimental trends mimicked those predicted by the density matrix calculations but the agreement was not as good as for the spin-3/2 case. Some SIMPSON simulations were also carried out to confirm the results generated by our density matrix calculations. The theoretical flip-angle behavior of the NMR transition intensities obtained from a spin-7/2 spin system is also discussed.


Assuntos
Análise de Fourier , Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Óxido de Alumínio/química , Simulação por Computador , Cristalização , Campos Eletromagnéticos , Nitratos/química
2.
Magn Reson Chem ; 47(6): 465-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19274677

RESUMO

Determination of the NMR anisotropic magnetic shielding parameters from magic angle spinning, MAS, powder samples containing half-integer spin quadrupolar nuclei is achieved by analysis of the difference spectrum obtained with and without application of a hyperbolic secant pulse. Application of a hyperbolic secant pulse to any spinning sideband associated with the central transition, m(I) = 1/2 to m(I) = - 1/2, results in 'saturation' of the entire central transition manifold. Similarly, if one spinning sideband associated with the m(I) = 3/2 to m(I) = 1/2 and m(I) = - 1/2 to m(I) = - 3/2 satellite transitions is perturbed, the entire satellite manifold associated with these transitions is 'saturated' while the central transition is enhanced by population transfer. Three 'difference spectrum' techniques are employed to selectively yield the spinning sidebands associated predominantly from the central transition. The success of these difference techniques is first demonstrated by examining (51)V NMR spectra of three metavanadate salts and (59)Co NMR spectra of Co(acac)(3). The vanadium and cobalt chemical shift tensors in these compounds have spans between 400 and 1400 ppm. Because the hyperbolic secant techniques proposed here yielded results that are in good agreement with earlier reports, they have been applied to characterize the (51)V chemical shift tensor of the dimer of bis(N, N-dimethylhydroxamido)-hydroxooxovanadate, {V(O)(ONMe(2))(2)}(2)O, whose chemical shift tensor has not been previously reported.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Vanadatos/química , Padrões de Referência , Reprodutibilidade dos Testes
3.
J Magn Reson ; 184(1): 85-100, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17046297

RESUMO

The experimental factors influencing the enhancements achievable for the central NMR transition, m(I)=1/2-->m(I)=-1/2, of spin-3/2 and spin-5/2 nuclei in the solid state using hyperbolic secant, HS, pulses for population transfer are investigated. In the case of powder samples spinning at the magic angle, it is found that the spinning frequency, the bandwidth and the frequency offset of the HS pulse play a crucial role in determining the maximum enhancements. Specifically, the bandwidth must be set to the spinning frequency for maximum signal enhancements. The (87)Rb NMR enhancement obtained for RbClO(4) using HS pulses was relatively insensitive to the magic angle spinning frequency; however, in the case of Al(acac)(3), the (27)Al enhancement increased with MAS frequency. In order to obtain an adiabatic HS sweep, one should optimize the rf field for a given pulse duration or optimize the pulse duration for a given rf field.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Pós , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...