Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 3): 116277, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263468

RESUMO

This study aimed to evaluate the possibility of P precipitation as struvite from real anaerobic digestion (AD) effluent of tapioca starch processing. The results showed that at a pH of 9, and without Mg:P molar adjustment, P recovery was at 85%. The percentage of P recovery was increased to 90% and P contained in precipitates was at 11.80-14.70 wt% P, which is higher than commercial single superphosphate fertilizer (SSP, 18-22 wt% P2O5). This was achieved by controlling mixing at 200-400 rpm and upflow velocity at 50-200 cm min-1 inside a fluidized bed reactor (FBR). Based on SEM-EDX, powder XRD, phase identification by profile matching, and FT-IR analysis, the results demonstrated that recovered precipitates formed struvite predominantly. In addition, results of the woodchip ash additions and the one-way ANOVA based-RSM analysis revealed that mixing, the solution pH, and the woodchip ash intensely affected P recovery with the optimum condition found at 400 rpm, pH9, 4 g L-1, respectively. Ash addition enhanced P recovery efficiency but decreased the product's purity. Total costs of P recovery varied considerably from 0.28 to 7.82 USD∙(kg P)-1 depending on chemical consumption and %P content in recovered products. Moreover, the total cost was reduced by 57% from 7.82 USD∙(kg P)-1 (profit margin: -4.30 to -2.82) by a single mixing operation to 3.35 USD∙(kg P)-1 (profit margin: +0.17 to +1.65) employing coupling effect of mixing and Vup. The results indicate that P recovery from tapioca starch AD effluent not only provides a good-quality alternative slow-release P fertilizer, but also helps to curtail environmental problems due to excessive P and nitrogen discharge. These findings also demonstrate the ways of recovering nutrients from an abundant renewable resource that are relevant to simultaneous waste utilization during pollution controls.


Assuntos
Manihot , Fósforo , Eliminação de Resíduos Líquidos , Anaerobiose , Fertilizantes , Compostos de Magnésio , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Estruvita , Eliminação de Resíduos Líquidos/métodos
2.
Int J Biol Macromol ; 229: 575-588, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592857

RESUMO

Technical lignin can be mainly obtained as a waste by-product from pulp industry, and it exhibits unique properties including ultraviolet adsorption, biodegradable, antibacterial, and antioxidant which can be utilized for bioplastic applications. However, common limitations of technical lignin for plastic applications are compatibility mainly due to poor interfacial adhesion, relatively large particle size and impurity. In this study lignin nanoparticles from softwood (S-LNPs) were successfully produced through a continuous-green-scalable antisolvent precipitation and the suitability of S-LNPs for fabrication of bio-composite polybutylene succinate (PBS) films using conventional blown film extrusion was examined. The attained S-LNPs showed lower ash content, higher phenolic content and higher lignin content compared to pristine softwood kraft lignin (S-lignin). Rheological property including shear viscosity and melt-flow index was determined. The obtained PBS/S-LNP composite films showed improved tensile modulus, higher water vapor transmission rate and excellent UV-shielding ability compared to neat PBS and PBS/S-lignin films. Accelerated weathering testing was conducted to replicate outdoor conditions. Degradation indices including carbonyl, vinyl and hydroxyl of the weathered PBS/lignin composites were evaluated for photo-oxidative stability. The S-LNPs as multifunctional bio-additives in biodegradable composite film exhibited superior performances of transparency, UV-absorption and stiffness with high photo-oxidative stability suitable for outdoor applications.


Assuntos
Lignina , Nanopartículas , Lignina/química , Biopolímeros , Fenômenos Químicos , Oxirredução , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...