Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(4): 254-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342665

RESUMO

Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification has only recently begun to be studied. We previously reported that biosilicification occurs in the gram-positive, spore-forming bacterium Bacillus cereus, and that silica is intracellularly deposited on the spore coat as a protective coating against acids, although the underlying mechanism is not yet fully understood. In eukaryotic biosilicifying organisms, such as diatoms and siliceous sponges, several relevant biomolecules are embedded in biogenic silica (biosilica). These biomolecules include peptides, proteins, and long-chain polyamines. In this study, we isolated organic compounds embedded in B. cereus biosilica to investigate the biomolecules involved in the prokaryotic biosilicification process and identified long-chain polyamines with a chemical structure of H2N-(CH2)4-[NH-(CH2)3]n-NH2 (n: up to 55). Our results demonstrate the common presence of long-chain polyamines in different evolutionary lineages of biosilicifying organisms, i.e., diatoms, siliceous sponges, and B. cereus, suggesting a common mechanism underlying eukaryotic and prokaryotic biosilicification.


Assuntos
Diatomáceas , Poliaminas , Poliaminas/metabolismo , Dióxido de Silício/química , Bacillus cereus , Proteínas/química , Esporos/metabolismo , Diatomáceas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...