Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236195

RESUMO

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

2.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362039

RESUMO

The molecular chaperones HdeA and HdeB of the Escherichia coli (E. coli) periplasm protect client proteins from acid denaturation through a unique mechanism that utilizes their acid denatured states to bind clients. We previously demonstrated that the active, acid-denatured form of HdeA is also prone to forming inactive, amyloid fibril-like aggregates in a pH-dependent, reversible manner. In this study, we report that HdeB also displays a similar tendency to form fibrils at low pH. HdeB fibrils were observed at pH < 3 in the presence of NaCl. Similar to HdeA, HdeB fibrils could be resolubilized by a simple shift to neutral pH. In the case of HdeB, however, we found that after extended incubation at low pH, HdeB fibrils were converted into a form that could not resolubilize at pH 7. Fresh fibrils seeded from these "transformed" fibrils were also incapable of resolubilizing at pH 7, suggesting that the transition from reversible to irreversible fibrils involved a specific conformational change that was transmissible through fibril seeds. Analyses of fibril secondary structure indicated that HdeB fibrils retained significant alpha helical content regardless of the conditions under which fibrils were formed. Fibrils that were formed from HdeB that had been treated to remove its intrinsic disulfide bond also were incapable of resolubilizing at pH 7, suggesting that certain residual structures that are retained in acid-denatured HdeB are important for this protein to recover its soluble state from the fibril form.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Humanos , Ácidos/metabolismo , Amiloide/química , Amiloide/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...