Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 84: 101954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718896

RESUMO

OBJECTIVE: The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS: We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS: The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS: This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.


Assuntos
Córtex Suprarrenal , Envelhecimento , Análise de Célula Única , Transcriptoma , Humanos , Envelhecimento/genética , Envelhecimento/metabolismo , Análise de Célula Única/métodos , Córtex Suprarrenal/metabolismo , Masculino , Perfilação da Expressão Gênica/métodos , Idoso , Adulto , Feminino , Pessoa de Meia-Idade , Macrófagos/metabolismo
2.
Anal Chem ; 96(3): 1275-1283, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38186224

RESUMO

The accuracy of the structural annotation of unidentified peaks obtained in metabolomic analysis using liquid chromatography/tandem mass spectrometry (LC/MS/MS) can be enhanced using retention time (RT) information as well as precursor and product ions. Unified-hydrophilic-interaction/anion-exchange liquid chromatography high-resolution tandem mass spectrometry (unified-HILIC/AEX/HRMS/MS) has been recently developed as an innovative method ideal for nontargeted polar metabolomics. However, the RT prediction for unified-HILIC/AEX has not been developed because of the complex separation mechanism characterized by the continuous transition of the separation modes from HILIC to AEX. In this study, we propose an RT prediction model of unified-HILIC/AEX/HRMS/MS, which enables the comprehensive structural annotation of polar metabolites. With training data for 203 polar metabolites, we ranked the feature importance using a random forest among 12,420 molecular descriptors (MDs) and constructed an RT prediction model with 26 selected MDs. The accuracy of the RT model was evaluated using test data for 51 polar metabolites, and 86.3% of the ΔRTs (difference between measured and predicted RTs) were within ±1.50 min, with a mean absolute error of 0.80 min, indicating high RT prediction accuracy. Nontargeted metabolomic data from the NIST SRM 1950-Metabolites in frozen human plasma were analyzed using the developed RT model and in silico MS/MS prediction, resulting in a successful structural estimation of 216 polar metabolites, in addition to the 62 identified based on standards. The proposed model can help accelerate the structural annotation of unknown hydrophilic metabolites, which is a key issue in metabolomic research.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Metabolômica/métodos , Ânions , Interações Hidrofóbicas e Hidrofílicas
3.
J Lipid Res ; 65(1): 100492, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135255

RESUMO

Quantitative information on blood metabolites can be used in developing advanced medical strategies such as early detection and prevention of disease. Monitoring bioactive lipids such as steroids, bile acids, and PUFA metabolites could be a valuable indicator of health status. However, a method for simultaneously measuring these bioactive lipids has not yet been developed. Here, we report a LC/MS/MS method that can simultaneously measure 144 bioactive lipids, including steroids, bile acids, and PUFA metabolites, from human plasma, and a sample preparation method for these targets. Protein removal by methanol precipitation and purification of bioactive lipids by solid-phase extraction improved the recovery of the targeted compounds in human plasma samples, demonstrating the importance of sample preparation methods for a wide range of bioactive lipid analyses. Using the developed method, we studied the plasma from healthy human volunteers and confirmed the presence of bioactive lipid molecules associated with sex differences and circadian rhythms. The developed method of bioactive lipid analysis can be applied to health monitoring and disease biomarker discovery in precision medicine.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Humanos , Feminino , Masculino , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Ácidos e Sais Biliares , Lipídeos
4.
J Cachexia Sarcopenia Muscle ; 14(6): 2866-2881, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941098

RESUMO

BACKGROUND: Diabetes is associated with an increased risk of deleterious changes in muscle mass and function or sarcopenia, leading to physical inactivity and worsening glycaemic control. Given the negative energy balance during sodium-glucose cotransporter-2 (SGLT2) inhibition, whether SGLT2 inhibitors affect skeletal muscle mass and function is a matter of concern. However, how SGLT2 inhibition affects the skeletal muscle function in patients with diabetes remains insufficiently explored. We aimed to explore the effects of canagliflozin (CANA), an SGLT2 inhibitor, on skeletal muscles in genetically diabetic db/db mice focusing on the differential responses of oxidative and glycolytic muscles. METHODS: Db/db mice were treated with CANA for 4 weeks. We measured running distance and handgrip strength to assess skeletal muscle function during CANA treatment. At the end of the experiment, we performed a targeted metabolome analysis of the skeletal muscles. RESULTS: CANA treatment improved the reduced endurance capacity, as revealed by running distance in db/db mice (414.9 ± 52.8 vs. 88.7 ± 22.7 m, P < 0.05). Targeted metabolome analysis revealed that 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl 5'-monophosphate (AICARP), a naturally occurring AMP-activated protein kinase (AMPK) activator, increased in the oxidative soleus muscle (P < 0.05), but not in the glycolytic extensor digitorum longus muscle (P = 0.4376), with increased levels of AMPK phosphorylation (P < 0.01). CONCLUSIONS: This study highlights the potential role of the AICARP/AMPK pathway in oxidative rather than glycolytic skeletal muscles during SGLT2 inhibition, providing novel insights into the mechanism by which SGLT2 inhibitors improve endurance capacity in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Força da Mão , Músculo Esquelético/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
5.
Sci Rep ; 13(1): 18549, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899460

RESUMO

4-hydroxytamoxifen (OHT) is an anti-cancer drug that induces apoptosis in breast cancer cells. Although changes in lipid levels and mitochondrial respiration have been observed in OHT-treated cells, the overall mechanisms underlying these metabolic alterations are poorly understood. In this study, time-series metabolomics and lipidomics were used to analyze the changes in metabolic profiles induced by OHT treatment in the MCF-7 human breast cancer cell line. Lipidomic and metabolomic analyses revealed increases in ceramide, diacylglycerol and triacylglycerol, and decreases in citrate, respectively. Gene expression analyses revealed increased expression of ATP-dependent citrate lyase (ACLY) and subsequent fatty acid biosynthetic enzymes, suggesting that OHT-treated MCF-7 cells activate citrate-to-lipid metabolism. The significance of the observed metabolic changes was evaluated by co-treating MCF-7 cells with OHT and ACLY or a diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor. Co-treatment ameliorated cell death and reduced mitochondrial membrane potential compared to that in OHT treatment alone. The inhibition of cell death by co-treatment with an ACLY inhibitor has been observed in other breast cancer cell lines. These results suggest that citrate-to-lipid metabolism is critical for OHT-induced cell death in breast cancer cell lines.


Assuntos
Neoplasias da Mama , Lipidômica , Humanos , Feminino , Células MCF-7 , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Metaboloma , Citratos
6.
EBioMedicine ; 95: 104733, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37543511

RESUMO

BACKGROUND: Autonomous cortisol secretion (ACS), resulting from cortisol-producing adenomas (CPA), causes endogenous steroid-induced osteoporosis (SIOP). However, the risk of endogenous SIOP cannot be explained by cortisol excess alone, and how other steroid metabolites affect bone status is unclear. METHODS: ACS was diagnosed as serum cortisol ≥1.8 µg/dL after the 1-mg dexamethasone suppression test (DST-cortisol). Using liquid chromatography tandem mass spectrometry, 21 plasma steroid metabolites were measured in 73 patients with ACS and 85 patients with non-functioning adrenal tumors (NFAT). Expression of steroidogenic enzymes and relevant steroid metabolites were analyzed in some of CPA tissues. FINDINGS: Discriminant and principal component analyses distinguished steroid profiles between the ACS and NFAT groups in premenopausal women. Premenopausal women with ACS exhibited higher levels of a mineralocorticoid metabolite, 11-deoxycorticosterone (11-DOC), and lower levels of androgen metabolites, dehydroepiandrosterone-sulfate, and androsterone-glucuronide. In premenopausal women with ACS, DST-cortisol negatively correlated with trabecular bone score (TBS). Additionally, 11-DOC negatively correlated with lumbar spine-bone mineral density, whereas androsterone-glucuronide positively correlated with TBS. The CPA tissues showed increased 11-DOC levels with increased expression of CYP21A2, essential for 11-DOC synthesis. Adrenal non-tumor tissues were atrophied with reduced expression of CYB5A, required for androgen synthesis. INTERPRETATION: This study demonstrates that unbalanced production of adrenal steroid metabolites, derived from both adrenal tumor and non-tumor tissues, contributes to the pathogenesis of endogenous SIOP in premenopausal women with ACS. FUNDING: JSPS KAKENHI, Secom Science and Technology Foundation, Takeda Science Foundation, Japan Foundation for Applied Enzymology, AMED-CREST, JSTA-STEP, JST-Moonshot, and Ono Medical Research Foundation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Síndrome de Cushing , Osteoporose , Humanos , Feminino , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/metabolismo , Hidrocortisona , Androgênios , Androsterona , Glucuronídeos , Esteroides , Esteroide 21-Hidroxilase
7.
Anal Chim Acta ; 1246: 340863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764769

RESUMO

Supercritical fluid chromatography (SFC) is often coupled with electrospray ionization mass spectrometry (ESI-MS) for analyte detection because of its detection capability to a wide range of chemical properties. However, MS sensitivity is highly dependent on the chromatographic conditions, so that it is important to understand the ionization mechanism to determine the optimal chromatographic conditions. The ionization mechanism in SFC/ESI-MS is different to that of liquid chromatography because of the use of CO2 as a mobile phase. Some studies have suggested that alkoxycarbonic acids are formed in the mixture of CO2 and the alcohol modifier, and these species contribute to ionization in CO2-assisted SFC/ESI-MS. Therefore, in this study, we investigated CO2-assisted ESI to test this hypothesis, and we confirmed that methoxylcarbonic acid is generated in CO2/methanol mixtures and contributed to ion generation and detection because it acts as a proton donor in positive-ion mode. However, methoxylcarbonic acid interfered with ionization in negative-ion mode. Addition of ammonium acetate, which is often added to the modifier for negative ion detection in SFC/MS analysis, did not contribute to the recovery of MS sensitivity, although it tended to suppress the formation of metoxylcarbonic acid. This is likely due to ion suppression and neutralization of the negative sites of the analytes by anions or cations derived from ammonium acetate in the negative ion mode. Thus, additive-free methanol/CO2 was the most suitable mobile phase for obtaining high sensitivity in SFC/MS. To demonstrate the practicality of these findings, we tested our optimal mobile phase selection for pesticide analysis. In addition, we tested the addition of 0, 1, and 5 mM ammonium formate to the modifier and make-up solvent, and found that the addition of 1 mM ammonium formate gave the best results in pesticides analysis. In SFC/MS, salt is often added to improve separation or prevent desorption, but our findings suggest that the concentration of salt must be kept as low as possible to achieve highly sensitive MS detection. The results of this study reveal the best selection of the optimal conditions for the modifier and make-up solvent for CO2-assisted SFC/MS analysis and will be useful for the method development in SFC/MS.

8.
iScience ; 25(12): 105612, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465123

RESUMO

Dyslipidemia including the accumulation of cholesteryl esters (CEs) in the brain is associated with neurological disorders, although the underlying mechanism has been unclear. PDZD8, a Rab7 effector protein, transfers lipids between endoplasmic reticulum (ER) and Rab7-positive organelles and thereby promotes endolysosome maturation and contributes to the maintenance of neuronal integrity. Here we show that CEs accumulate in the brain of PDZD8-deficient mice as a result of impaired lipophagy. This CE accumulation was not affected by diet, implicating a defect in intracellular lipid metabolism. Whereas cholesterol synthesis appeared normal, degradation of lipid droplets (LDs) was defective, in the brain of PDZD8-deficient mice. PDZD8 may mediate the exchange of cholesterol and phosphatidylserine between ER and Rab7-positive organelles to promote the fusion of CE-containing LDs with lysosomes for their degradation. Our results thus suggest that PDZD8 promotes clearance of CEs from the brain by lipophagy, with this role of PDZD8 likely contributing to brain function.

9.
Anal Chem ; 94(48): 16877-16886, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426757

RESUMO

One of the technical challenges in the field of metabolomics is the development of a single-run method to detect the full complement of polar metabolites in biological samples. However, an ideal method to meet this demand has not yet been developed. Herein, we proposed a simple methodology that enables the comprehensive and simultaneous analysis of polar metabolites using unified-hydrophilic-interaction/anion-exchange liquid chromatography mass spectrometry (unified-HILIC/AEX/MS) with a polymer-based mixed amines column composed of methacrylate-based polymer particles with primary, secondary, tertiary, and quaternary amines as functional groups. The optimized unified-HILIC/AEX/MS method is composed of two consecutive chromatographic separations, HILIC-dominant separation for cationic, uncharged, and zwitterionic polar metabolites [retention times (RTs) = 0-12.8 min] and AEX-dominant separation for polar anionic metabolites (RTs = 12.8-26.5 min), by varying the ratio of acetonitrile to 40 mM ammonium bicarbonate solution (pH 9.8). A total of 400 polar metabolites were analyzed simultaneously through a combination of highly efficient separation using unified-HILIC/AEX and remarkably sensitive detection using multiple reaction monitoring-based triple quadrupole mass spectrometry (unified-HILIC/AEX/MS/MS). A nontargeted metabolomic approach using unified-HILIC/AEX high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) also provided more comprehensive information on polar metabolites (3242 metabolic features) in HeLa cell extracts than the conventional HILIC/HRMS method (2068 metabolic features). Our established unified-HILIC/AEX/MS/MS and unified-HILIC/AEX/HRMS methods have several advantages over conventional techniques, including polar metabolome coverage, throughput, and accurate quantitative performance, and represent potentially useful tools for in-depth studies on metabolism and biomarker discovery.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Humanos , Células HeLa , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Ânions , Aminas , Polímeros
10.
Mass Spectrom (Tokyo) ; 11(1): A0112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713805

RESUMO

Proton-transfer-reaction (PTR) mass spectrometry (MS), a widely used method for detecting trace-levels of volatile organic compounds in gaseous samples, can also be used for the analysis of small non-volatile molecules by using supercritical fluid as a transporter for the molecules. Supercritical fluid extraction (SFE) is a method that permits lipophilic compounds to be rapidly and selectively extracted from complex matrices. The combination of the high sensitivity of PTR MS with the SFE is a potentially novel method for analyzing small molecules in a single cell, particularly for the analysis of lipophilic compounds. We preliminarily evaluated this method for analyzing the components of a single HeLa cell that is fixed on a stainless steel frit and is then directly introduces the SFE extracts into the PTR MS. A total of 200/91 ions were observed in positive/negative ion mode time-of-flight mass spectra, and the masses of 11/10 ions could be matched to chemical formulae obtained from the LipidMaps lipids structure database. Using various authentic lipophilic samples, the method could be used to detect free fatty acids in the sub-femtomole to femtomole order in the negative ion mode, the femtomole to sub-picomole order for fat-soluble vitamins, and the picomole order for poly aromatic hydrocarbons in both the positive and negative ion mode.

11.
Mass Spectrom (Tokyo) ; 9(1): A0080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547894

RESUMO

The rapid development of next-generation sequencing techniques has enabled single-cell genomic and transcriptomic analyses, which have revealed the importance of heterogeneity in biological systems. However, analytical methods to accurately identify and quantify comprehensive metabolites from single mammalian cells with a typical diameter of 10-20 µm are still in the process of development. The aim of this study was to develop a single-cell metabolomic analytical system based on highly sensitive nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) with multiple reaction monitoring. A packed nano-LC column (3-µm particle-size pentafluorophenylpropyl Discovery HSF5 of dimensions 100 µm i.d.×180 mm) was prepared using a slurry technique. The optimized nano-LC-MS/MS method showed 3-132-fold (average value, 26-fold) greater sensitivity than semimicro-LC-MS/MS, and the detection limits for several hydrophilic metabolites, including amino acids and nucleic acid related metabolites were in the sub-fmol range. By combining live single-cell sampling and nano-LC-MS/MS, we successfully detected 18 relatively abundant hydrophilic metabolites (16 amino acids and 2 nucleic acid related metabolites) from single HeLa cells (n=22). Based on single-cell metabolic profiles, the 22 HeLa cells were classified into three distinct subclasses, suggesting differences in metabolic function in cultured HeLa cell populations. Our single-cell metabolomic analytical system represents a potentially useful tool for in-depth studies focused on cell metabolism and heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...