Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34134975

RESUMO

Ferromagnetically interacting Ising spins on the pyrochlore lattice of corner-sharing tetrahedra form a highly degenerate manifold of low-energy states. A spin flip relative to this "spin-ice" manifold can fractionalize into two oppositely charged magnetic monopoles with effective Coulomb interactions. To understand this process, we have probed the low-temperature magnetic response of spin ice to time-varying magnetic fields through stroboscopic neutron scattering and SQUID magnetometry on a new class of ultrapure Ho2Ti2O7 crystals. Covering almost 10 decades of time scales with atomic-scale spatial resolution, the experiments resolve apparent discrepancies between prior measurements on more disordered crystals and reveal a thermal crossover between distinct relaxation processes. Magnetic relaxation at low temperatures is associated with monopole motion through the spin-ice vacuum, while at elevated temperatures, relaxation occurs through reorientation of increasingly spin-like monopolar bound states. Spin fractionalization is thus directly manifest in the relaxation dynamics of spin ice.

2.
Phys Rev B ; 100(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38617197

RESUMO

We present a quantitative experimental investigation of the scalar chiral magnetic order with in Nd3Sb3Mg2O14. Static magnetization reveals a net ferromagnetic ground state, and inelastic neutron scattering from the hyperfine coupled nuclear spin reveals a local ordered moment of 1.76(6) µB, just 61(2)% of the saturated moment size. The experiments exclude static disorder as the source of the reduced moment. A 38(1) µeV gap in the magnetic excitation spectrum inferred from heat capacity rules out thermal fluctuations and suggests a multipolar explanation for the moment reduction. We compare Nd3Sb3Mg2O14 to Nd pyrochlores and show that Nd2Zr2O7 is in a spin fragmented state using nuclear Schottky heat capacity.

3.
Nat Commun ; 9(1): 2619, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976983

RESUMO

Materials with the pyrochlore/fluorite structure have diverse technological applications, from magnetism to nuclear waste disposal. Here we report the observation of structural instability present in the pyrochlores A2Zr2O6O' (A = Pr, La) and Yb2Ti2O6O', that exists despite ideal stoichiometry, ideal cation-ordering, the absence of lone pair effects, and a lack of magnetic order. Though these materials appear to have good long-range order, local structure probes find displacements, of the order of 0.01 nm, within the pyrochlore framework. The pattern of displacements of the A2O' sublattice mimics the entropically-driven fluxional motions characteristic of and well-known in the silica mineral ß-cristobalite. The universality of such displacements within the pyrochlore structure adds to the known structural diversity and explains the extreme sensitivity to composition found in quantum spin ices and the lack of ferroelectric behavior in pyrochlores.

4.
Nat Commun ; 8(1): 2097, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235469

RESUMO

Dirac and Weyl semimetals with linearly crossing bands are the focus of much recent interest in condensed matter physics. Although they host fascinating phenomena, their physics can be understood in terms of weakly interacting electrons. In contrast, more than 40 years ago, Abrikosov pointed out that quadratic band touchings are generically strongly interacting. We have performed terahertz spectroscopy on the films of the conducting pyrochlore Pr2Ir2O7, which has been shown to host a quadratic band touching. A dielectric constant as large as [Formula: see text] is observed at low temperatures. In such systems, the dielectric constant is a measure of the relative scale of interactions, which are therefore in our material almost two orders of magnitude larger than the kinetic energy. Despite this, the scattering rate exhibits a T 2 dependence, which shows that for finite doping a Fermi liquid state survives-however, with a scattering rate close to the maximal value allowed.

5.
Nat Mater ; 16(11): 1090-1095, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967918

RESUMO

Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions-namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution of Weyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems such as Mn3Sn.

6.
Phys Rev Lett ; 118(14): 145902, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430491

RESUMO

A distinct thermal Hall signal is observed in a quantum spin liquid candidate Ba_{3}CuSb_{2}O_{9}. The transverse thermal conductivity shows a power-law temperature dependence below 50 K, where a spin gap opens. We suggest that because of the very low longitudinal thermal conductivity and the thermal Hall signals, a phonon Hall effect is induced by strong phonon scattering of orphan Cu^{2+} spins formed in the random domains of the Cu^{2+}-Sb^{5+} dumbbells in Ba_{3}CuSb_{2}O_{9}.

7.
Phys Rev Lett ; 118(10): 107206, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339241

RESUMO

Inelastic neutron scattering reveals a broad continuum of excitations in Pr_{2}Zr_{2}O_{7}, the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields (Δ) acting on the non-Kramers Pr^{3+} crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. A random phase approximation provides an excellent account of the data with a transverse field distribution ρ(Δ)∝(Δ^{2}+Γ^{2})^{-1}, where Γ=0.27(1) meV. Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr_{2}Zr_{2}O_{7} actually induces a quantum spin liquid.

8.
Phys Rev Lett ; 117(5): 056403, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517783

RESUMO

We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd_{2}Ir_{2}O_{7} through its magnetic metal-insulator transition. Our data reveal that metallic Nd_{2}Ir_{2}O_{7} has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr_{2}Ir_{2}O_{7}. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a nondispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.

9.
J Phys Condens Matter ; 28(42): 425602, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27541840

RESUMO

We report on the evidence for the multiband electronic transport in α-YbAlB4 and α-Yb0.81(2)Sr0.19(3)AlB4. Multiband transport reveals itself below 10 K in both compounds via Hall effect measurements, whereas anisotropic magnetic ground state sets in below 3 K in α-Yb0.81(2)Sr0.19(3)AlB4. Our results show that Sr(2+) substitution enhances conductivity, but does not change the quasiparticle mass of bands induced by heavy fermion hybridization.

10.
Phys Rev Lett ; 116(19): 197202, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232040

RESUMO

We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF_{4}. For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25(1). The exponents agree with the 2D XY/h_{4} universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2+1)D. These results are in line with those found for LiErF_{4} which has the same crystal structure, but largely different T_{N}, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice.

11.
Nat Commun ; 6: 10042, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26640114

RESUMO

Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.

12.
J Phys Condens Matter ; 27(25): 255601, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26045483

RESUMO

ß-YbAlB4 has become one of the most studied heavy fermion systems since its discovery due to its remarkable physical properties. This system is the first reported Yb-based heavy-fermion superconductor (HFS) for which the low-T superconducting state emerges from a non-fermi-liquid (NFL) normal state associated with quantum criticality Nakatsuji et al 2008 Nature 4 603. Additionally, it presents a striking and unprecedented electron spin resonance (ESR) signal which behaves as a conduction electron spin resonance (CESR) at high temperatures and acquires features of the Yb(3+) local moment ESR at low temperatures. The latter, also named Kondo quasiparticles spin resonance (KQSR), has been defined as a 4f-ce strongly coupled ESR mode that behaves as a local probe of the Kondo quasiparticles in a quantum critical regime, Holanda et al 2011 Phys. Rev. Lett. 107 026402. Interestingly, ß-YbAlB4 possesses a previously known structural variant, namely the α-YbAlB4, phase which is a paramagnetic Fermi liquid (FL) at low temperatures Macaluso et al 2007 Chem. Mater. 19 1918. However, it has been recently suggested that the α-YbAlB4 phase may be tuned to NFL behavior and/or magnetic ordering as the compound is doped with Fe. Here we report ESR studies on the α-Yb1-xFexAlB4 (0 â©½ x â©½ 0.50) series as well as on the reference compound α-LuAlB4. For all measured samples, the observed ESR signal behaves as a CESR in the entire temperature range (10 K â‰² T â‰² 300 K) in clear contrast with what has been observed for ß-YbAlB4. This striking result indicates that the proximity to a quantum critical point is crucial to the occurrence of a KQSR signal.

13.
Nat Mater ; 13(4): 356-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651428

RESUMO

When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating 'spin liquid' state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr2Ir2O7, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

14.
Nat Commun ; 4: 1934, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23770751

RESUMO

Spin ice is a magnetic analog of H2O ice that harbors dense static disorder. Dipolar interactions between classical spins yield a frozen frustrated state with residual configurational Pauling entropy and emergent magnetic monopolar quasiparticles. Introducing quantum fluctuations is of great interest as this could melt spin ice and allow coherent propagation of monopoles. Here, we report experimental evidence for quantum dynamics of magnetic monopolar quasiparticles in a new class of spin ice based on exchange interactions, Pr2Zr2O7. Narrow pinch point features in otherwise diffuse elastic neutron scattering reflects adherence to a divergence-free constraint for disordered spins on long time scales. Magnetic susceptibility and specific heat data correspondingly show exponentially activated behaviors. In sharp contrast to conventional ice, however, >90% of the neutron scattering is inelastic and devoid of pinch points furnishing evidence for magnetic monopolar quantum fluctuations.

15.
J Phys Condens Matter ; 25(21): 216001, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23628913

RESUMO

This work reports on electron spin resonance experiments in oriented single crystals of the hexagonal AlB2 diboride compound (P6/mmm, D16h structure) which display conduction electron spin resonance. The X-band electron spin resonance spectra showed a metallic Dysonian resonance with g-value and intensity independent of temperature. The thermal broadening of the anisotropic electron spin resonance linewidth ΔH tracks the T-dependence of the electrical resistivity below T is approximately equal to 100 K. These results confirm the observation of a conduction electron spin resonance in AlB2 and are discussed in comparison with other boride compounds. Based on our main findings for AlB2 and the calculated electronic structure of similar layered honeycomb-like structures, we conclude that any array of covalent B-B layers potentially results in a conduction electron spin resonance signal. This observation may shed new light on the nature of the non-trivial conduction electron spin resonance-like signals of complex f-electron systems such as ß-YbAlB4.

16.
Phys Rev Lett ; 109(17): 176405, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215210

RESUMO

ß-YbAlB(4) is the unique heavy fermion superconductor that exhibits unconventional quantum criticality without tuning in a strongly intermediate valence state. Despite the large coherence temperature, set by the peak of the longitudinal resistivity, our Hall effect measurements reveal that resonant skew scattering from incoherent local moments persists down to at least ~40 K, where the Hall coefficient exhibits a distinct minimum signaling another formation of coherence. The observation strongly suggests that the hybridization between f moments and conduction electrons has a two-component character with distinct Kondo or coherence scales T(K) of ~40 K and 200 K; this is confirmed by the magnetic field dependence of ρ(xy).

17.
Phys Rev Lett ; 109(18): 187004, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215319

RESUMO

We report the discovery of a pressure-induced heavy fermion superconductivity in a nonmagnetic orbital ordering state in the cubic compound PrTi(2)Al(20). In particular, we found that the transition temperature and the effective mass associated with the superconductivity are dramatically enhanced as the system approaches the putative quantum critical point of the orbital order. Our experiment indicates that the strong orbital fluctuations may provide a nonmagnetic glue for Cooper pairing.

18.
Phys Rev Lett ; 109(15): 156405, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102346

RESUMO

The thermoelectric coefficients have been measured down to a very low temperature for the Yb-based heavy-fermion compounds ß-YbAlB4 and YbRh2Si2, often considered as model systems for the local quantum criticality case. We observe a striking difference in the behavior of the Seebeck coefficient S in the vicinity of their respective quantum critical point (QCP). Approaching the critical field, S/T is enhanced in ß-YbAlB4, but drastically reduced in YbRh2Si2. The ratio of thermopower to specific heat remains constant for ß-YbAlB4, but it is significantly reduced near the QCP in YbRh2Si2. In both systems, on the other hand, the Nernst coefficient shows a diverging behavior near the QCP. The interplay between valence and magnetic quantum criticality and the additional possibility of a Lifshitz transition crossing the critical field under magnetic field are discussed as the origin of the different behaviors of these compounds.

19.
Science ; 336(6081): 559-63, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556246

RESUMO

Frustrated magnetic materials, in which local conditions for energy minimization are incompatible because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case for Ba(3)CuSb(2)O(9), which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration of Wannier's Ising model on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu(2+) ions that resists a coherent static Jahn-Teller distortion. The resulting two-dimensional random-bond spin-1/2 system on the honeycomb lattice has a broad spectrum of spin-dimer-like excitations and low-energy spin degrees of freedom that retain overall hexagonal symmetry.

20.
Nat Mater ; 11(4): 323-8, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344326

RESUMO

High-T(c) cuprates, iron pnictides, organic BEDT and TMTSF, alkali-doped C(60), and heavy-fermion systems have superconducting states adjacent to competing states exhibiting static antiferromagnetic or spin density wave order. This feature has promoted pictures for their superconducting pairing mediated by spin fluctuations. Sr(2)RuO(4) is another unconventional superconductor which almost certainly has a p-wave pairing. The absence of known signatures of static magnetism in the Sr-rich side of the (Ca, Sr) substitution space, however, has led to a prevailing view that the superconducting state in Sr(2)RuO(4) emerges from a surrounding Fermi-liquid metallic state. Using muon spin relaxation and magnetic susceptibility measurements, we demonstrate here that (Sr,Ca)(2)RuO(4) has a ground state with static magnetic order over nearly the entire range of (Ca, Sr) substitution, with spin-glass behaviour in Sr(1.5)Ca(0.5)RuO(4) and Ca(1.5)Sr(0.5)RuO(4). The resulting new magnetic phase diagram establishes the proximity of superconductivity in Sr(2)RuO(4) to competing static magnetic order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...