Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107552, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646020

RESUMO

Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity.

2.
Cell Rep ; 42(5): 112530, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209098

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
3.
J Biochem ; 173(2): 129-138, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477205

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.


Assuntos
Quinase 3 da Glicogênio Sintase , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 14(2): 333-355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35398596

RESUMO

BACKGROUND & AIMS: Cellular senescence frequently is present in injured livers. The induction mechanism and the pathologic role are not always clear. We aimed to understand the dynamics of senescence induction and progression, and the mechanism responsible for the pathology using a mouse model that disables the essential process of autophagy. METHODS: Mice deficient in key autophagy genes Atg7 or Atg5 in the liver were used. Senescence was measured using established cellular and molecular signatures. The mechanistic roles of nuclear factor erythroid 2 (NRF2), forkhead box K1, and C-C motif chemokine receptor 2 (CCR2) were assessed using mouse genetic models. Liver functions, pathology, and tumor development were measured using biochemical and histologic approaches. RESULTS: Inducible deletion of Atg7 rapidly up-regulated cyclin-dependent kinase inhibitors independently of injury and induced senescence-associated ß-galactosidase activities and senescence-associated secretory phenotype (SASP). Sustained activation of NRF2 was the major factor causing senescence by mediating oxidative DNA damage and up-regulating C-C motif chemokine ligand 2, a key component of autophagy-related SASP, via the NRF2-forkhead box K1 axis. Senescence was responsible for hepatic inflammation through CCR2-mediated recruitment of CD11b+ monocytes and CD3+ T cells. The CCR2-mediated process in turn enhanced senescence and SASP by up-regulating cyclin-dependent kinase inhibitors and chemokines. Thus, senescence and inflammation can mutually augment each other, forming an amplification loop for both events. The CCR2-mediated process also modulated liver injury and tumor progression at the later stage of autophagy deficiency-related pathology. CONCLUSIONS: These results provide the insight that hepatic senescence can occur early in the disease process, triggers inflammation and is enhanced by inflammation, and has long-term effects on liver injury and tumor progression.


Assuntos
Autofagia , Senescência Celular , Inflamação , Neoplasias Hepáticas Experimentais , Animais , Autofagia/genética , Quinases Ciclina-Dependentes , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Receptores CCR2/genética
5.
Nat Commun ; 13(1): 1500, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314700

RESUMO

Although the mammalian intestinal epithelium manifests robust regenerative capacity after various cytotoxic injuries, the underlying mechanism has remained unclear. Here we identify the cyclin-dependent kinase inhibitor p57 as a specific marker for a quiescent cell population located around the +4 position of intestinal crypts. Lineage tracing reveals that the p57+ cells serve as enteroendocrine/tuft cell precursors under normal conditions but dedifferentiate and act as facultative stem cells to support regeneration after injury. Single-cell transcriptomics analysis shows that the p57+ cells undergo a dynamic reprogramming process after injury that is characterized by fetal-like conversion and metaplasia-like transformation. Population-level analysis also detects such spatiotemporal reprogramming widely in other differentiated cell types. In intestinal adenoma, p57+ cells manifest homeostatic stem cell activity, in the context of constitutively activated spatiotemporal reprogramming. Our results highlight a pronounced plasticity of the intestinal epithelium that supports maintenance of tissue integrity in normal and neoplastic contexts.


Assuntos
Mucosa Intestinal , Neoplasias , Animais , Diferenciação Celular , Mucosa Intestinal/metabolismo , Intestinos , Mamíferos , Neoplasias/metabolismo , Células-Tronco/metabolismo
6.
Nat Commun ; 11(1): 4576, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917905

RESUMO

Endosome maturation depends on membrane contact sites (MCSs) formed between endoplasmic reticulum (ER) and endolysosomes (LyLEs). The mechanism underlying lipid supply for this process and its pathophysiological relevance remains unclear, however. Here, we identify PDZD8-the mammalian ortholog of a yeast ERMES subunit-as a protein that interacts with protrudin, which is located at ER-LyLE MCSs. Protrudin and PDZD8 promote the formation of ER-LyLE MCSs, and PDZD8 shows the ability to extract various lipids from the ER. Overexpression of both protrudin and PDZD8 in HeLa cells, as well as their depletion in mouse primary neurons, impairs endosomal homeostasis by inducing the formation of abnormal large vacuoles reminiscent of those apparent in spastin- or REEP1-deficient neurons. The protrudin-PDZD8 system is also essential for the establishment of neuronal polarity. Our results suggest that protrudin and PDZD8 cooperatively promote endosome maturation by mediating ER-LyLE tethering and lipid extraction at MCSs, thereby maintaining neuronal polarity and integrity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/fisiologia , Metabolismo dos Lipídeos , Neurônios/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Lipídeos , Lipossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Mitocôndrias , Domínios Proteicos , Proteômica , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
7.
Genes Cells ; 25(6): 427-438, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32267063

RESUMO

All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.


Assuntos
Ciclo Celular/genética , Embrião de Mamíferos/metabolismo , Placenta/metabolismo , Placentação/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Embrião de Mamíferos/embriologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/embriologia , Gravidez , Ratos , Proteínas Quinases Associadas a Fase S/genética
8.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830867

RESUMO

Dormant cancer cells known as disseminated tumor cells (DTCs) are often present in bone marrow of breast cancer patients. These DTCs are thought to be responsible for the incurable recurrence of breast cancer. The mechanism underlying the long-term maintenance of DTCs remains unclear, however. Here, we show that Fbxw7 is essential for the maintenance of breast cancer dormancy. Genetic ablation of Fbxw7 in breast cancer cells disrupted the quiescence of DTCs, rendering them proliferative, in mouse xenograft and allograft models. Fbxw7-deficient DTCs were significantly depleted by treatment with paclitaxel, suggesting that cell proliferation induced by Fbxw7 ablation sensitized DTCs to chemotherapy. The combination of Fbxw7 ablation and chemotherapy reduced the number of DTCs even when applied after tumor cell dissemination. Mice injected with Fbxw7-deficient cancer cells survived longer after tumor resection and subsequent chemotherapy than did those injected with wild-type cells. Furthermore, database analysis revealed that breast cancer patients whose tumors expressed FBXW7 at a high level had a poorer prognosis than did those with a low FBXW7 expression level. Our results suggest that a wake-up strategy for DTCs based on Fbxw7 inhibition might be of value in combination with conventional chemotherapy for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Medula Óssea/patologia , Células da Medula Óssea/patologia , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral/transplante , Proliferação de Células , Estudos de Coortes , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos , Recidiva Local de Neoplasia/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Prognóstico , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genes Cells ; 23(7): 599-605, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845697

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) kinase is a master regulator of the cellular response to nutrition-related signals such as insulin and amino acids. mTORC1 is activated on the lysosomal membrane and induces phosphorylation of a variety of downstream molecules. We previously showed that activated mTORC1 induces protein phosphatase 2A (PP2A)-mediated dephosphorylation of the transcription factor forkhead box K1 (FOXK1). The mechanism underlying the signal transduction from the cytoplasmic mTORC1 to the nuclear FOXK1 has remained unclear, however, we now show that a nuclear-cytoplasmic transport system is necessary for the mTORC1-FOXK1 signal transduction. This reaction is mediated by a shuttling protein B56, which is a regulatory subunit of PP2A and plays an essential role in the mTORC1-dependent dephosphorylation of FOXK1. These results suggest that PP2AB56 phosphatase contributes to the signaling for mTORC1-dependent transcriptional regulation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Fosfatase 2/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Nat Commun ; 8(1): 1625, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158492

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in regulating cell growth and metabolism by responding to cellular nutrient conditions. The activity of mTORC1 is controlled by Rag GTPases, which are anchored to lysosomes via Ragulator, a pentameric protein complex consisting of membrane-anchored p18/LAMTOR1 and two roadblock heterodimers. Here we report the crystal structure of Ragulator in complex with the roadblock domains of RagA-C, which helps to elucidate the molecular basis for the regulation of Rag GTPases. In the structure, p18 wraps around the three pairs of roadblock heterodimers to tandemly assemble them onto lysosomes. Cellular and in vitro analyses further demonstrate that p18 is required for Ragulator-Rag GTPase assembly and amino acid-dependent activation of mTORC1. These results establish p18 as a critical organizing scaffold for the Ragulator-Rag GTPase complex, which may provide a platform for nutrient sensing on lysosomes.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Lisossomos/química , Lisossomos/enzimologia , Lisossomos/genética , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Ligação Proteica , Multimerização Proteica
11.
Cell Rep ; 21(9): 2471-2486, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186685

RESUMO

C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)-κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1, resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB and that CCL2 produced by this pathway contributes to tumor progression.


Assuntos
Quimiocina CCL2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Células HCT116 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteômica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Nat Methods ; 14(3): 251-258, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267743

RESUMO

Targeted proteomics approaches are of value for deep and accurate quantification of protein abundance. Extending such methods to quantify large numbers of proteins requires the construction of predefined targeted assays. We developed a targeted proteomics platform-in vitro proteome-assisted multiple reaction monitoring (MRM) for protein absolute quantification (iMPAQT)-by using >18,000 human recombinant proteins, thus enabling protein absolute quantification on a genome-wide scale. Our platform comprises experimentally confirmed MRM assays of mass tag (mTRAQ)-labeled peptides to allow for rapid and straightforward measurement of the absolute abundance of predefined sets of proteins by mass spectrometry. We applied iMPAQT to delineate the quantitative metabolic landscape of normal and transformed human fibroblasts. Oncogenic transformation gave rise to relatively small but global changes in metabolic pathways resulting in aerobic glycolysis (Warburg effect) and increased rates of macromolecule synthesis. iMPAQT should facilitate quantitative biology studies based on protein abundance measurements.


Assuntos
Genoma Humano/genética , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Linhagem Celular Transformada , Fibroblastos/metabolismo , Glicólise/fisiologia , Humanos , Biblioteca de Peptídeos , Proteínas Recombinantes/análise
14.
Mol Cell Biol ; 32(3): 590-605, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22124152

RESUMO

D-type cyclins play a pivotal role in G(1)-S progression of the cell cycle, and their expression is frequently deregulated in cancer. Cyclin D1 has a half-life of only ~30 min as a result of its ubiquitylation and proteasomal degradation, with various F-box proteins, including Fbxo4, Fbxw8, Skp2, and Fbxo31, having been found to contribute to its ubiquitylation. We have now generated Fbxo4-deficient mice and found no abnormalities in these animals. Cyclin D1 accumulation was thus not observed in Fbxo4(-/-) mouse tissues. The half-life of cyclin D1 in mouse embryonic fibroblasts (MEFs) prepared from Fbxo4(-/-), Fbxw8(-/-), and Fbxo4(-/-); Fbxw8(-/-) mice also did not differ from that in wild-type MEFs. Additional depletion of Skp2 and Fbxo31 in Fbxo4(-/-); Fbxw8(-/-) MEFs by RNA interference did not affect cyclin D1 stability. Although Fbxo31 depletion in MEFs increased cyclin D1 abundance, this effect appeared attributable to upregulation of cyclin D1 mRNA. Furthermore, abrogation of the function of the Skp1-Cul1-F-box protein (SCF) complex or the anaphase-promoting complex/cyclosome (APC/C) complexes did not alter the half-life of cyclin D1, whereas cyclin D1 degradation was dependent largely on proteasome activity. Our genetic analyses thus do not support a role for any of the four F-box proteins examined in cyclin D1 degradation during normal cell cycle progression. They suggest the existence of other ubiquitin ligases that target cyclin D1 for proteolysis.


Assuntos
Ciclina D1/metabolismo , Proteínas F-Box/genética , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular , Proteínas Culina/metabolismo , Feminino , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Interferência de RNA , Proteínas Quinases Associadas a Fase S/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
15.
J Biol Chem ; 285(33): 25418-25, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20566630

RESUMO

Caspases are central to apoptosis, and the principal executioner caspases, caspase-3 and -7, were reported to be similar in activity, primary structure, and three-dimensional structure. Here, we identified different activity in caspase-3 and -7 within cells and examined the relationship between their structure and function using human cells expressing almost equal amounts of exogenous caspase-3, caspase-7, and/or chimeric constructs after down-regulation of endogenous caspase-3 and -7 expression. Caspase-3 (produced in human cells) showed much stronger cleaving activity than caspase-7 against a low molecular weight substrate in vitro dependent on four specific amino acid regions. Within cells, however, an additional three regions were required for caspase-3 to exert much stronger protease activity than caspase-7 against cellular substrates. Three of the former four regions and the latter three regions were shown to form two different three-dimensional structures that were located at the interface of the homodimer of procaspase-7 on opposite sides. In addition, procaspase-3 and -7 revealed specific homodimer-forming activity within cells dependent on five amino acid regions, which were included in the regions critical to the cleaving activity within cells. Thus, human caspase-3 and -7 exhibit differences in protease activity, specific homodimer-forming activity, and three-dimensional structural features, all of which are closely interrelated.


Assuntos
Caspase 3/metabolismo , Caspase 7/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Caspase 3/genética , Caspase 7/genética , Células Cultivadas , Colorimetria , Células HeLa , Humanos , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...