Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2213713120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812202

RESUMO

Indirect interactions via shared memory deposited on the field ("field memory") play an essential role in collective motions. Some motile species, such as ants and bacteria, use attractive pheromones to complete many tasks. Mimicking these kinds of collective behavior at the laboratory scale, we present a pheromone-based autonomous agent system with tunable interactions. In this system, colloidal particles leave phase-change trails reminiscent of the process of pheromone deposition by individual ants, and the trails attract other particles and themselves. To implement this, we combine two physical phenomena: the phase change of a Ge2Sb2Te5 (GST) substrate by self-propelled Janus particles (pheromone deposition) and the AC (alternating current) electroosmotic (ACEO) flow generated by this phase change (pheromone attraction). Laser irradiation causes the GST layer to crystalize locally beneath the Janus particles, owing to the lens heating effect. Under AC field application, the high conductivity of the crystalline trail causes a field concentration and generates ACEO flow, and we introduce this flow as an attractive interaction between the Janus particles and the crystalline trail. By changing the AC frequency and voltage, we can tune the attractive flow, i.e., the sensitivity of the Janus particles to the trail, and the isolated particles undergo diverse states of motion, from self-caging to directional motion. A swarm of Janus particles also shows different states of collective motion, including colony formation and line formation. This tunability enables a reconfigurable system driven by a pheromone-like memory field.

2.
Opt Express ; 29(10): 15001-15012, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985209

RESUMO

Dynamic tuning of nanoscale coloration by exploiting localized surface plasmon resonance of gold nanoparticles (AuNPs) combined with an interference coloration mechanism is demonstrated experimentally. When interference between the scattering field from AuNPs and the reflected field from the substrate is observed under back-scattering white-light microscopy, the AuNPs exhibit various colors depending on their distance to the substrate. When the numerical aperture of the microscope objective is optimized, much greater coverage of the color space than was achieved with previously reported plasmon-based approaches is attained. Also, color tunability is examined by exploiting the temperature-induced volume change of a temperature-responsive hydrogel with embedded AuNPs to dynamically modify the distance to the substrate.

3.
Langmuir ; 35(19): 6403-6408, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31008609

RESUMO

Optical techniques have been actively studied for manipulating nano- to microsized objects. However, long-range attraction and rapid transport of particles within thin quasi-two-dimensional systems are difficult because of the weak thermophoretic forces. Here, we introduce an experimental system that can rapidly generate quasi-two-dimensional colloidal crystals in deionized water, sandwiched between two hard plates. When a pulsed laser is irradiated on a chalcogenide phase-change material spattered on one side of the plates, the induced Marangoni-like flow causes a colloidal self-assembly in the order of tens of micrometers within the laser spot, with a transport velocity of a few tens of micrometers per second. This is due to the large thermal gradient induced by chalcogenide characteristics of high laser absorption and low thermal conductivity, and a strong hydrodynamic slip flow at the hydrophobic chalcogenide interface. Moreover, the colloidal crystals exhibit various lattice structures, depending on the laser intensity and chamber distance. For a certain range of the chamber distance, the colloidal crystal phases can be alternated by tuning the laser intensity in real time. Our system forms and deforms quasi-two-dimensional colloidal crystals at an on-demand location on a GeSbTe substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...