Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544140

RESUMO

In order to survive subzero temperatures, some plants undergo cold acclimation (CA) where low, nonfreezing temperatures, and/or shortened day lengths allow cold-hardening and survival during subsequent freeze events. Central to this response is the plasma membrane (PM), where low temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first PM proteome of cold-acclimated Brachypodium distachyon, a model species for the study of monocot crops. A time-course experiment investigated CA-induced changes in the proteome following two-phase partitioning PM enrichment and label-free quantification by nano-liquid chromatography-mass spectrophotometry. Two days of CA were sufficient for membrane protection as well as an initial increase in sugar levels and coincided with a significant change in the abundance of 154 proteins. Prolonged CA resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained CA response elicited over several days. A meta-analysis revealed that the identified PM proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress, and salt resistance suggesting crosstalk between stress responses, such that CA may prime plants for other abiotic and biotic stresses. The PM proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.


Assuntos
Brachypodium , Gases em Plasma , Aclimatação , Brachypodium/genética , Membrana Celular , Temperatura Baixa , Proteínas de Plantas/genética , Proteoma
2.
Plant Dis ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33822664

RESUMO

Cabbage (Brassica oleracea var. capitata) is one of the important vegetables in Japan. In the summer of 2019, some cabbages with soft rot were found in commercial fields in Hokkaido, the northern island in Japan. All diseased plants showed grey to brown discoloration and expanding water-soaked lesions on leaves. We obtained two independent strains (NACAB191 and NACAB192) from diseased leaves. DNA from these strains yielded an expected single size amplicon with the primer set of PhF/PhR for P. wasabiae (De Boer et al. 2012) by PCR, but did not yield the expected amplicon with the primer set of BR1f/L1r for P. carotovorum subsp. brasiliense (Duarte et al. 2004) and Eca1f/Eca2r for P. atrosepticum (De Boer et al., 1995) by PCR. These two strains grew at 37°C, and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative and rod-shaped. The bacterium was positive for O-nitrophenyl-beta-D-galactopyranoside, N-acetylglucosaminyl transferase, gelatin liquefaction, and acid production from D-galactose, lactose, melibiose, raffinose, citrate, and trehalose. The bacterium was negative for indole production and acid production from maltose, α-methyl-D-glucoside, sorbitol, D-arabitol, inositol, inulin, and melezitose. All strains exhibited pectolytic activity on potato slices. The sequence analysis of 16S rDNA (LC597897 and LC597898) showed more than 98% identities to P. wasabiae strain (e.g. HAFL01 in Switzerland) by BLAST analysis. In addition, Multi-locus sequence analysis (Ma et al. 2007) was performed by MEGA10 (Kumer et al. 2018) using concatenated DNA sequences of seven housekeeping genes (aconitate hydratase(acnA, LC597923 and LC597924), glyceraldehyde-3-phosphate dehydrogenase A(gapA, LC597970 and LC597971), isocitrate dehydrogenase (icdA, LC597996 and LC597997), malate dehydrogenase(mdh, LC598022 and LC598023), mannitol-1-phosphate dehydrogenase (mtlD, LC598048 and LC598049), glucose-6-phosphate isomerase (pgi, LC598074 and LC598075) and gamma-glutamyl phospate reductase (proA, LC598079 and LC598080)), and all clustered NACAB191 and NACAB192 into a clade containing other confirmed strains of P. wasabiae. As a result, these two strains shared high identity with each other (>98%, E-Values showed 0). The clade containing these two strains was consistently placed in a larger clade with the other P. wasabiae and 100% bootstrap support for its separation from other Pectobacterium species available in GenBank when the consensus tree constructed using Maximum Likelihood method. Pathogenicity of these strains against cabbage (cv. 'Rakuen') was confirmed by the field experiments with five weeks growth plants sprayed with bacterial suspension (1×107cfu/ml). Thirty cabbages per strain were used in this study, 12 plants treated the suspension of NACAB191 and 16 plants treated the suspension of NACAB192 which died with the same soft rot symptoms about four weeks after inoculation. Whereas water-inoculated plants remained symptomless. Strains re-isolated from the artificially diseased stems were confirmed as P. wasabiae using the methods as biochemical characterization and multiple genetic analyses. Based on the disease symptoms, the cultural, molecular, and pathological features of the strains, we conclude that the soft rot symptoms of cabbage in Hokkaido in 2019 were caused by P. wasabiae. To our knowledge, this is the first report of P. wasabiae as the soft rot disease agent of cabbage in Japan.

3.
Plant Dis ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779247

RESUMO

Onion (Allium cepa L.) is one of the important vegetables in Japan. In the summer of 2019, onions with soft rot were found in commercial fields in Hokkaido, the northern island in Japan. Diseased onion showed chlorosis, maceration of leaves, and rotted bulbs. We sampled some diseased onions and isolated three independent isolations (NAONI191, NAONI192 and NAONI193) from infected bulbs on LB medium. These strains were identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction. The bacterium was positive for O-nitrophenyl-beta-D-galactopyranoside, N-acetylglucosaminyl transferase, gelatin liquefaction, and acid production from D-galactose, lactose, melibiose, raffinose, citrate, and trehalose. The bacterium was negative for indole production and acid production from maltose, α-methyl-D-glucoside, sorbitol, D-arabitol, inositol, inulin, and melezitose. All the strains exhibited pectolytic activity on potato slices. DNA from these strains yielded a single size amplicon with the primer set of PhF/PhR for P. wasabiae (De Boer et al. 2012) by PCR. However, DNA from these strains did not yield the expected amplicon with the primer set of BR1f/L1r for P. carotovorum subsp. brasiliense (Duarte et al. 2004) and Eca1f/Eca2r for P. atrosepticum (De Boer et al., 1995) by PCR. The sequence analysis of 16S rDNA (LC597917- LC597919) showed more than 98% identities to P. wasabiae strains (e.g. HAFL01 in Switzerland) by BLAST analysis. In addition, Multi-locus sequence analysis (Ma et al. 2007) was performed by MEGA6.06 using concatenated DNA sequences of seven housekeeping genes (aconitate hydratase(acnA, LC597925- LC597927), glyceraldehyde-3-phosphate dehydrogenase A(gapA, LC597972-LC597974), isocitrate dehydrogenase (icdA, LC597998- LC597998LC598000), malate dehydrogenase(mdh, LC598024- LC598026), mannitol-1-phosphate dehydrogenase (mtlD, LC598050- LC598052), glucose-6-phosphate isomerase (pgi, LC598076- LC598078) and gamma-glutamyl phospate reductase (proA, LC598099- LC598101)), and all clustered into a clade containing other confirmed strains of P. wasabiae. As a result, these three strains shared high identity with each other (>98%, E-Values showed 0). The clade containing these three strains was consistently placed in a larger clade with the other P. wasabiae and 100% bootstrap support for its separation from other Pectobacterium species available in GenBank when the consensus tree constructed using Maximum Likelihood method. Pathogenicity of these strains against onion (cv. 'Hayate') was confirmed by the field experiments with 5 weeks growth plants sprayed with bacterial suspension (1×107cfu/ml) resulting in soft rot on the plants about four weeks after inoculation, whereas water-inoculated plants remained symptomless. Strains re-isolated from the artificially diseased stems were confirmed as P. wasabiae using the methods as biochemical characterization and multiple genetic analyses. Based on the disease symptoms, the cultural, molecular, and pathological features of the strains, we conclude that the soft rot symptoms of onion in Hokkaido in 2019 were caused by P. wasabiae. To our knowledge, this is the first report of P. wasabiae as the soft rot disease agent of onion in Japan.

4.
Methods Mol Biol ; 2156: 171-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607982

RESUMO

Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze-thaw cycle. Changes in plasma membrane protein composition have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran-polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.


Assuntos
Resposta ao Choque Frio , Proteínas de Membrana/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Aclimatação , Cromatografia Líquida , Resposta ao Choque Frio/genética , Congelamento , Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem
5.
Methods Mol Biol ; 2139: 89-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32462580

RESUMO

Shotgun proteomics allows for the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. However, this method is not fully applicable for highly hydrophobic proteins with multiple transmembrane domains. In order to solve this problem, we here describe a shotgun proteomics method using nano-LC-MS/MS for proteins in the plasma membrane and plasma membrane microdomain fractions. The results obtained are easily applicable to label-free protein semiquantification.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional/métodos , Espectrometria de Massas em Tandem/métodos
6.
Methods Mol Biol ; 1166: 159-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24852635

RESUMO

Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze-thaw cycle. Changes in the plasma membrane proteins have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran-polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Aclimatação , Arabidopsis/citologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Membrana Celular/metabolismo , Cromatografia Líquida , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Nanotecnologia , Proteoma/química , Proteoma/isolamento & purificação , Espectrometria de Massas em Tandem , Tripsina/metabolismo
7.
Methods Mol Biol ; 1072: 481-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136542

RESUMO

Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Nanotecnologia , Proteínas de Plantas/metabolismo , Proteômica/métodos , Avena/metabolismo , Proteínas de Membrana/química , Peptídeos/isolamento & purificação , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Tripsina/metabolismo
8.
Front Plant Sci ; 4: 90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616787

RESUMO

Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation). One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

9.
J Chem Phys ; 131(21): 214506, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19968350

RESUMO

Thermodynamic stability of hydrogen clathrate hydrates has been examined in a wide range of pressure based solely on the intermolecular interactions involved. We show that the stability is indeed augmented by a second guest species (here acetone) called a promoter, a consequence of which is notable reduction in the dissociation pressure of the hydrates encaging hydrogen alone. This evaluation is made by extension of the van der Waals-Platteeuw theory combined with semi-grand-canonical Monte Carlo (GCMC) simulations where the number of hydrogen molecules is allowed to vary while those of host water and promoter acetone molecules are fixed. The GCMC simulations then provide various types of cage occupancies of hydrogen from single to quadruple, from which the chemical potential of water in the clathrate hydrate is obtained as a function of the cage occupancy by acetone and the pressure. These occupancies are used to calculate the chemical potential of water in the clathrate hydrate. The stability is estimated by comparison of the chemical potential of water in the clathrate hydrate with that in hexagonal ice. We show the extent to which the dissociation pressure is reduced with increasing the occupancy of the larger cages by acetone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...