Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfus Clin Biol ; 13(1-2): 147-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16580864

RESUMO

The recently cloned, non-erythrocyte Rh glycoproteins (Rhbg and Rhcg) are expressed in the intercalated cells of the renal collecting duct. The apical Rhcg and the basolateral Rhbg are likely involved in NH3 and/or NH4+ transport, yet the characteristics of this transport are not yet certain. In this study we investigated the mechanism of NH4+ transport by Rhbg and Rhcg expressed in Xenopus oocytes. We used a two-electrode voltage-clamp and ion-selective microelectrodes to measure NH4+-induced currents (I(NH4)) and changes in pHi, respectively. In oocytes expressing Rhcg, exposure to bath [NH4+] of 2.5-20 mM induced inward currents that were slightly more than those in H2O-injected (control) oocytes. I-V plots in the presence of NH4+ showed a small increase in slope conductance only at positive potentials. On the other hand, in oocytes expressing Rhbg, 5 mM NH4+ induced an inward I(NH4) of -79 nA, decreased pHi (DeltapHi) by 0.13 at a rate (dpHi/dt) of -2 7 x 10(-4) pH/s and depolarized the cell by 45 mV. These changes were significantly more than those in control oocytes. I-V plots in the presence of NH4+ showed substantial increase in conductance. Amiloride (1 mM) inhibited I(NH4), DeltapHi and dpHi/dt in oocytes expressing Rhbg but not in control oocytes. Raising bath [NH4+] in increments from 1 to 20 mM elicited a faster dpHi/dt, a larger decrease in pHi and a larger depolarization. Net NH4+ flux by Rhbg (estimated from dpHi/dt) was proportional to [NH4+] gradient and followed saturation kinetics with an apparent Km of 2.3 mM. Methyl ammonium (5 mM) induced a current of -63 nA in Rhbg oocytes but did not cause any change in control oocytes. These data indicate that: 1) Rhbg transport of NH4+ is electrogenic. 2) Methyl ammonium is transported by Rhbg. 3) NH4+ transport by Rhbg is saturated at high concentrations with Michaelis-Menten kinetics.


Assuntos
Glicoproteínas/metabolismo , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Amônio Quaternário/metabolismo , Amilorida/farmacologia , Amônia/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Feminino , Glicoproteínas/genética , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Metilaminas/metabolismo , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Concentração Osmolar , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção , Xenopus laevis
2.
Am J Physiol Renal Physiol ; 281(3): F493-502, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11502598

RESUMO

The purpose of this study was to investigate the direct effect of NH(3)/NH on mouse epithelial Na(+) channels (mENaC) expressed in Xenopus oocytes. Two-electrode voltage-clamp and ion-selective microelectrodes were used to measure the Na(+) current, intracellular pH (pH(i)), and ion activities in oocytes expressing mENaC. In oocytes expressing mENaC, removal of external Na(+) reversibly hyperpolarized membrane potential by 129 +/- 5.3 mV in the absence of 20 mM NH(4)Cl but only by 100 +/- 7.8 mV in its presence. Amiloride completely inhibited the changes in membrane potential. In oocytes expressing mENaC, butyrate (20 mM) caused a decrease in pH(i) (0.43 +/- 0.07) similar to the NH(4)Cl-induced pH(i) decrease (0.47 +/- 0.12). Removal of Na(+) in the presence of butyrate caused hyperpolarization that was not significantly different from that in the absence of butyrate at high pH(i) (in the absence of NH(4)Cl). Removal of external Na(+) resulted in an outward current of 3.7 +/- 0.8 microA (at -60 mV). The magnitude of this change in current was only 2.7 +/- 0.7 microA when Na(+) was removed in the presence of NH(4)Cl. In oocytes expressing mENaC, NH(4)Cl also caused a decrease in whole cell conductance at negative potential and an outward current at positive potential. In the presence of amiloride, steady-state current and the change in current caused by removal of Na(+) were not different from zero. These results indicate that NH(4)Cl inhibits Na(+) transport when mENaC is expressed in oocytes. The inhibition of voltage changes is not due to intracellular acidification caused by NH(4)Cl. Permeability and selectivity of ENaC to NH may play a role.


Assuntos
Cloreto de Amônio/farmacologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Canais de Sódio/fisiologia , Amilorida/farmacologia , Animais , Butiratos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Canais Epiteliais de Sódio , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Proteínas Recombinantes/metabolismo , Canais de Sódio/genética , Fatores de Tempo , Xenopus laevis
3.
Am J Physiol Renal Physiol ; 281(2): F255-63, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11457716

RESUMO

The aim of this study was to determine whether expressing aquaporin (AQP)-1 could affect transport of NH(3). Using ion-selective microelectrodes, the experiments were conducted on frog oocytes (cells characterized by low NH(3) permeability) expressing AQP1. In H(2)O-injected oocytes, exposure to NH(3)/NH (20 mM, pH 7.5) caused a sustained cell acidification and no initial increase in pH(i) (as expected from NH(3) influx), and the cell depolarized to near 0 mV. The absence of Na(+), the presence of Ba(2+), or raising bath pH (pH(B)) did not inhibit the magnitude of the pH(i) decrease or result in an initial increase in pH(i) when NH(3)/NH was added. However, after the cell was acidified (because of NH(3)/NH), raising pH(B) to 8.0 caused a slow increase in pH(i) but had no effect on membrane potential. The changes in pH(i) with raising pH(B) did not occur in the absence of NH(3)/NH. In AQP1 oocytes, exposure to NH(3)/NH usually resulted in little or no change in pH(i), and in the absence of Na(+) there was a small increase in pH(i) (the cell still depolarized to near 0 mV). However, after exposure to NH(3)/NH, raising pH(B) to 8.0 caused pH(i) to increase more than two times faster than in control oocytes. This increase in pH(i) is likely the result of increased NH(3) entry and not the result of NH transport. These results indicate that 1) the oocyte membrane, although highly permeable to NH, has a significant NH(3) permeability and 2) NH(3) permeability is enhanced by AQP1.


Assuntos
Amônia/metabolismo , Aquaporinas/metabolismo , Oócitos/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sódio/metabolismo , Animais , Aquaporina 1 , Aquaporinas/genética , Eletrofisiologia , Concentração de Íons de Hidrogênio , Transporte de Íons/fisiologia , Microinjeções , Xenopus laevis
4.
Am J Physiol Gastrointest Liver Physiol ; 278(1): G113-20, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10644569

RESUMO

The opossum esophagus, like that of humans, contains a network of submucosal glands with the capacity to secrete bicarbonate ions into the esophageal lumen. To evaluate the role of these glands in protecting the epithelial surface from acid insult, we measured the lumen-to-surface pH gradient in opossum esophagus at different luminal pH and compared it to that of rabbit esophagus, an organ devoid of submucosal glands. Sections of opossum and rabbit esophageal epithelium were mounted luminal side up in a modified Ussing chamber. pH-sensitive microelectrodes, positioned within 5 microm of the epithelial cell surface, were used to monitor surface pH during perfusion with solutions of different pH. At luminal pH 7. 5, the pH(s) of both opossum and rabbit were similar (pH(s) = 7.5). Lowering luminal pH from 7.5 to 3.5 in opossum decreased pH(s) to 4.2+/-0.16, a value significantly higher than pH of perfusate, whereas in rabbit this maneuver decreased pH(s) to 3.69+/-0.08, a value not significantly different from pH of perfusate. In opossum but not in rabbit, addition of carbachol to the serosal solution increased basal pH(s) to 7.8+/- 0.1 and significantly blunted the decline in pH(s) on perfusion with acidic Ringer solution (pH 3.5), with pH(s) falling to 5.6+/-0.45. The effect of carbachol on surface buffering was inhibited by prior treatment with atropine. Luminal acidification to pH 2.0 in opossum (as in rabbit) abolished the lumen-to-surface pH gradient even after addition of serosal carbachol. We conclude that the presence of submucosal glands in esophagus contributes through bicarbonate secretion to creation of a lumen-to-surface pH gradient. Although this gradient can be modulated by carbachol, its capacity to buffer (and therefore to protect) the epithelial surface against back-diffusing H(+) is limited and dissipated at pH 2.0.


Assuntos
Esôfago/metabolismo , Hidrogênio/metabolismo , Ácidos/farmacologia , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Eletroquímica/instrumentação , Esôfago/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Microeletrodos , Mucosa/fisiologia , Gambás , Coelhos
5.
Am J Physiol ; 275(6): F998-F1007, 1998 12.
Artigo em Inglês | MEDLINE | ID: mdl-9843918

RESUMO

The M-1 cell line, derived from the mouse cortical collecting duct (CCD), is being used as a mammalian model of the CCD to study Na+ transport. The present studies aimed to further define the role of various hormones in affecting Na+ transport in M-1 cells grown in defined media. M-1 cells on permeable support, in serum-free media, developed amiloride-sensitive current 4-5 days after seeding. As expected for the involvement of epithelial Na+ channels, alpha-, beta-, and gamma-subunits of the epithelial Na+ channel were identified by RT-PCR. Either dexamethasone (Dex, 10-100 nM) or aldosterone (Aldo, 10(-6)-10(-7) M) for 24 h stimulated transport. Cells grown in the presence of Aldo and Dex had higher transport than with Dex alone. Spironolactone added to Dex media decreased transport. The acute effects of hormones reported to inhibit Na+ transport in CCD were also examined. Epidermal growth factor, phorbol esters, and increased intracellular Ca2+ with thapsigargin did not alter transport. Arginine vasopressin caused a transient increase in transport (probably Cl- secretion), which was not amiloride sensitive. Also, the protease inhibitor aprotinin decreased Na+ transport; in aprotinin-treated cells, trypsin stimulated transport. This study demonstrates that adrenal steroids (Dex > Aldo) stimulate Na+ transport in M-1 cells. At least part of this response may represent activation of mineralocorticoid receptors based on an additive effect of Dex and Aldo, as well as inhibition by spironolactone. Responses to immediate-acting hormones is limited. However, an endogenous protease activity, which activates Na+ transport, is present in these cells.


Assuntos
Túbulos Renais Coletores/metabolismo , Sódio/metabolismo , Aldosterona/farmacologia , Amilorida/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Dexametasona/farmacologia , Diuréticos/farmacologia , Eletrofisiologia , Glucocorticoides/farmacologia , Hormônios/farmacologia , Córtex Renal , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/fisiologia , Camundongos , Inibidores de Proteases/farmacologia
6.
Am J Physiol ; 275(1): F33-45, 1998 07.
Artigo em Inglês | MEDLINE | ID: mdl-9689002

RESUMO

We examined the effect of norepinephrine (NE) on intracellular pH (pHi) and activity of Na+ (aNai) in the isolated perfused kidney proximal tubule of Ambystoma, using single-barreled voltage and ion-selective microelectrodes. In control HCO-3 Ringer, addition of 10(-6) M NE to the bath reversibly depolarized the basolateral membrane potential (V1), the luminal membrane potential (V2), and the transepithelial potential difference (V3) and increased pHi by 0. 14 +/- 0.02. These effects were mimicked by isoproterenol but were abolished after pretreatment with SITS or in the absence of CO2/HCO-3. Removal of bath Na+ depolarized V1 and V2, hyperpolarized V3, and decreased pHi. These effects are largely mediated by the electrogenic Na+-(HCO-3)n cotransporter. In the presence of NE, the effects of Na+ removal on membrane potential differences and the rate of change of pHi were significantly smaller. Reducing bath HCO-3 concentration from 10 to 2 mM at constant CO2 (pH 6.8) depolarized V1 and V2, decreased pHi, and lowered aNai. These changes are also due to Na+-(HCO-3)n. In the presence of NE, reducing bath [HCO-3] caused a smaller depolarizations of V1 and V2, and the rate of pHi decrease was significantly reduced. Our results indicate: 1) NE causes an increase in pHi; 2) the NE-induced alkalinization is mediated by a SITS-sensitive and HCO-3-dependent transporter on the basolateral membrane; and 3) in the presence of NE, the reduced effects caused by basolateral HCO-3 changes or Na+ removal are indicative of an inhibitory effect of NE on Na+-(HCO-3)n cotransport.


Assuntos
Proteínas de Transporte/metabolismo , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/fisiologia , Norepinefrina/farmacologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Ambystoma , Animais , Proteínas de Transporte/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Técnicas In Vitro , Isoproterenol/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Perfusão , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato
7.
Am J Physiol ; 274(2): C543-8, 1998 02.
Artigo em Inglês | MEDLINE | ID: mdl-9486145

RESUMO

It is generally accepted that gases such as CO2 cross cell membranes by dissolving in the membrane lipid. No role for channels or pores in gas transport has ever been demonstrated. Here we ask whether expression of the water channel aquaporin-1 (AQP1) enhances the CO2 permeability of Xenopus oocytes. We expressed AQP1 in Xenopus oocytes by injecting AQP1 cRNA, and we assessed CO2 permeability by using microelectrodes to monitor the changes in intracellular pH (pHi) produced by adding 1.5% CO2/10 mM HCO3- to (or removing it from) the extracellular solution. Oocytes normally have an undetectably low level of carbonic anhydrase (CA), which eliminates the CO2 hydration reaction as a rate-limiting step. We found that expressing AQP1 (vs. injecting water) had no measurable effect on the rate of CO2-induced pHi changes in such low-CA oocytes: adding CO2 caused pHi to fall at a mean initial rate of 11.3 x 10(-4) pH units/s in control oocytes and 13.3 x 10(-4) pH units/s in oocytes expressing AQP1. When we injected oocytes with water, and a few days later with CA, the CO2-induced pHi changes in these water/CA oocytes were more than fourfold faster than in water-injected oocytes (acidification rate, 53 x 10(-4) pH units/s). Ethoxzolamide (ETX; 10 microM), a membrane-permeant CA inhibitor, greatly slowed the pHi changes (16.5 x 10(-4) pH units/s). When we injected oocytes with AQP1 cRNA and then CA, the CO2-induced pHi changes in these AQP1/CA oocytes were approximately 40% faster than in the water/CA oocytes (75 x 10(-4) pH units/s), and ETX reduced the rates substantially (14.7 x 10(-4) pH units/s). Thus, in the presence of CA, AQP1 expression significantly increases the CO2 permeability of oocyte membranes. Possible explanations include 1) AQP1 expression alters the lipid composition of the cell membrane, 2) AQP1 expression causes overexpression of a native gas channel, and/or 3) AQP1 acts as a channel through which CO2 can permeate. Even if AQP1 should mediate a CO2 flux, it would remain to be determined whether this CO2 movement is quantitatively important.


Assuntos
Aquaporinas , Dióxido de Carbono/farmacocinética , Canais Iônicos/farmacologia , Oócitos/metabolismo , Animais , Aquaporina 1 , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Etoxzolamida/farmacologia , Feminino , Concentração de Íons de Hidrogênio , Microeletrodos , Oócitos/efeitos dos fármacos , Xenopus laevis
8.
Am J Physiol ; 267(5 Pt 2): F725-36, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7977777

RESUMO

The effect of norepinephrine (NE) on mechanisms of cellular Na+ transport in the isolated, perfused proximal tubule of Ambystoma tigrinum was examined. Single-barreled voltage and ion-selective microelectrodes were used to determine basolateral (V1), luminal (V2), and transepithelial (V3) membrane potentials and intracellular Na+ activity (alpha Nai). In CO2/HCO3- control solution, addition of NE (10(-6) M) to the bath caused depolarizations of V1, V2, and V3 are decreased alpha Nai. These effects were mimicked by isoproterenol and inhibited by propranolol. Addition of NE in the absence of luminal Na+ and substrates did not cause any changes in V1, V2, V3, or alpha Nai. NE did not affect the changes in membrane potential difference (PD) or alpha Nai caused by removal and readdition of luminal substrates and/or Na+. To study the effect of NE on Na-K-adenosinetriphosphatase (Na-K-ATPase), the pump was inhibited by external K+ removal and then reactivated by readdition of 12 mM K+ to the bath in the presence and absence of NE. Reactivation of the pump caused hyperpolarization of membrane PDs, and alpha Nai recovered monotonically in 3-5 min. The peak hyperpolarizations of V1 and V2 (approximately 1 min) were significantly larger in the presence of NE. During the first 3 min, and also at the same alpha Nai, the rate of decrease of alpha Nai was significantly faster in the presence of NE. In conclusion, these results show a direct effect of NE on cell membrane PDs and alpha Nai in the kidney proximal tubule. Most likely, beta-receptors are involved in mediating the action of NE. Neither Na/H exchange nor Na-substrate cotransport at the luminal membrane are affected by NE. On the other hand, NE activates Na-K-ATPase.


Assuntos
Túbulos Renais Proximais/fisiologia , Norepinefrina/farmacologia , Sódio/metabolismo , Ambystoma , Animais , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Epitélio/efeitos dos fármacos , Epitélio/fisiologia , Técnicas In Vitro , Isoproterenol/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Perfusão/instrumentação , Perfusão/métodos , Potássio/farmacologia , Propranolol/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
9.
Glia ; 10(3): 155-64, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8194859

RESUMO

We examined H+ and HCO3- transport mechanisms that are involved in the regulation of intracellular pH of Schwann cells. Primary cultures of Schwann cells were prepared from the sciatic nerves of 1-3-day-old rats. pHi of single cells attached to cover slips was continuously monitored by measuring the absorbance spectra of the pH-sensitive dye dimethylcarboxyfluorescein incorporated intracellularly. The average pHi of neonatal Schwann cells bathed in HEPES mammalian solution was 7.17 +/- 0.02 (n = 32). In the nominal absence of HCO3-, pHi spontaneously recovered from an acute acid load induced by exposing the Schwann cells to 20 mM NH4+ (NH4+ prepulse). This pHi recovery from the acute acid load was totally inhibited in the absence of external Na+ or in the presence of 1 mM amiloride. In both cases, the pHi recovery was readily restored upon readdition of external Na+ or removal of amiloride. In the steady-state, addition of amiloride caused a small and slow decrease in pHi which was readily reversed upon removal of amiloride. In the presence of HCO3-, removal of external Cl- caused pHi to rapidly and reversibly increase by 0.23 +/- 0.03 (n = 15) and the initial rate of alkalinization was 20.6 +/- 2.7 x 10(-4) pH/sec. In the absence of external Na+, removal of bath Cl- still caused pHi to increase by 0.15 +/- 0.02 and the initial rate of pHi increase was not significantly altered. In the nominal absence of HCO3-, removal of bath Cl- caused pHi to increase very slightly (0.05 +/- 0.01) with an initial dpHi/dt of only 4.4 +/- 0.2 x 10(-4) pH/sec (n = 4). Addition of 100 microM DIDS did not inhibit the pHi increase caused by removal of bath Cl-. These data indicate that 1) Rat Schwann cells regulate their pHi via an Na-H exchange mechanism which is moderately active at steady-state pHi. 2) In the presence of HCO3-, there is a Na-independent Cl-HCO3 (base) exchanger which also contributes to regulation of intracellular pH in Schwann cells.


Assuntos
Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Células de Schwann/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácidos/metabolismo , Amilorida/farmacologia , Animais , Antiporters/metabolismo , Bicarbonatos/farmacologia , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato , Cloretos/farmacologia , HEPES/farmacologia , Homeostase , Compostos de Amônio Quaternário/farmacologia , Ratos , Nervo Isquiático/citologia , Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo
10.
J Gen Physiol ; 102(6): 1171-205, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8133244

RESUMO

We used the absorbance spectrum of the pH-sensitive dye dimethylcarboxyfluorescein to monitor intracellular pH (pHi) in the isolated perfused S3 segment of the rabbit proximal tubule, and examined the effect on pHi of switching from a HEPES to a CO2/HCO3- buffer in the lumen and/or the bath (i.e., basolateral solution). Solutions were titrated to pH 7.40 at 37 degrees C. With 10 mM acetate present bilaterally (lumen and bath), this causing steady-state pHi to be rather high (approximately 7.45), bilaterally switching the buffer from 32 mM HEPES to 5% CO2/25 mM HCO3- caused a sustained fall in pHi of approximately 0.26. However, with acetate absent bilaterally, this causing steady-state pHi to be substantially lower (approximately 6.9), bilaterally switching to CO2/HCO3- caused a transient pHi fall (due to the influx of CO2), followed by a sustained rise to a level approximately 0.18 higher than the initial one. The remainder of the experiments was devoted to examining this alkalinization in the absence of acetate. Switching to CO2/HCO3- only in the lumen caused a sustained pHi fall of approximately 0.15, whereas switching to CO2/HCO3- only in the bath caused a transient fall followed by a sustained pHi increase to approximately 0.26 above the initial value. This basolateral CO2/HCO3(-)-induced alkalinization was not inhibited by 50 microM DIDS applied shortly after CO2/HCO3- washout, but was slowed approximately 73% by DIDS applied more than 30 min after CO2/HCO3- washout. The rate was unaffected by 100 microM bilateral acetazolamide, although this drug greatly reduced CO2-induced pHi transients. The alkalinization was not blocked by bilateral removal of Na+ per se, but was abolished at pHi values below approximately 6.5. The alkalinization was also unaffected by short-term bilateral removal of Cl- or SO4=. Basolateral CO2/HCO3- elicited the usual pHi increase even when all solutes were replaced, short or long-term (> 45 min), by N-methyl-D-glucammonium/glucuronate (NMDG+/Glr-). Luminal CO2/HCO3- did not elicit a pHi increase in NMDG+/Glr-. Although the sustained pHi increase elicited by basolateral CO2/HCO3- could be due to a basolateral HCO3- uptake mechanism, net reabsorption of HCO3- by the S3 segment, as well as our ACZ data, suggest instead that basolateral CO2/HCO3- elicits the sustained pHi increase either by inhibiting an acid-loading process or stimulating acid extrusion across the luminal membrane (e.g., via an H+ pump).


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Túbulos Renais Proximais/metabolismo , Acetatos/farmacologia , Acetazolamida/farmacologia , Animais , Cloretos/metabolismo , Feminino , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Túbulos Renais Proximais/efeitos dos fármacos , Coelhos , Sódio/fisiologia , Sulfatos/metabolismo
11.
J Cell Physiol ; 153(3): 534-8, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1447314

RESUMO

Intracellular potassium and membrane potential were measured simultaneously by means of double-barrelled liquid ion-exchange microelectrodes in single fibers of rat thigh muscle in vivo in rats maintained in seven different metabolic states. The K+ equilibrium potential (EK) was more negative than the simultaneously measured membrane potential (Em) in the normal state by 18.4 mV. K+ loading, acute and chronic, resulted in depolarization of Em due to increased serum K+ (hyperkalemia) with no increase in intracellular K+. K+ depletion resulted in hyperpolarization of Em as plasma K+ decreased proportionately more than intracellular K+. Low Na+ diet had no effect. Intracellular K+ was decreased in acute acidosis but not in the chronic state. Thus K+ depletion and acute acidosis are associated with intracellular K+ decrease. The fact that hyperpolarization exists in the former and not the latter is a reflection that hypokalemia accompanies the former condition. The hyperpolarizing states of K+ depletion and chronic acidosis are accompanied by decreased excitability and muscle weakness.


Assuntos
Músculos/fisiologia , Potássio/fisiologia , Animais , Artérias , Bicarbonatos/sangue , Dióxido de Carbono/sangue , Eletroquímica , Concentração de Íons de Hidrogênio , Microeletrodos , Músculos/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Am J Physiol ; 258(2 Pt 2): F371-81, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2155541

RESUMO

We studied the role of basolateral HCO3- transport in the regulation of intracellular pH (pHi) in the isolated perfused S3 segment of the rabbit proximal tubule. pHi was calculated from absorbance spectra of the pH-sensitive dye dimethylcarboxyfluorescein. Solutions were normally buffered to pH 7.4 at 37 degrees C with 25 mM HCO3- 5% CO2. pHi fell by approximately 0.17 when luminal [HCO3-] was lowered to 5 mM at fixed PCO2 (i.e., reducing pH to 6.8) but by approximately 0.42 when [HCO3-] in the bath (i.e., basolateral solution) was lowered to 5 mM. The pHi decrease elicited by reducing bath [HCO3-] was substantially reduced by removal of Cl- or Na+, suggesting that components of basolateral HCO3- transport are Cl- and/or Na+ dependent. We tested for the presence of basolateral Cl-HCO3 exchange by removing bath Cl-. This caused pHi to increase by approximately 0.23, with an initial rate of approximately 100 X 10(-4) pH/s. Although the initial rate of this pHi increase was not reduced by removing Na+ bilaterally, it was substantially lowered by the nominal removal of HCO3- from bath and lumen or by the addition of 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) to the bath. The results thus suggest that a Na-independent Cl-HCO3 exchanger is present at the basolateral membrane. We tested for the presence of basolateral Na-HCO3 cotransport by removing bath Na+. This caused pHi to fall reversibly by approximately 0.26 with initial rates of pHi decline and recovery being approximately 30 and approximately 41 X 10(-4) pH/s, respectively. Although the bilateral removal of Cl- had no effect on these rates, the nominal removal of HCO3- or the presence of DIDS substantially slowed the pHi changes. Thus, in addition to a Cl-HCO3 exchanger, the basolateral membrane of the S3 proximal tubule also appears to possess a Na-HCO3 cotransport mechanism. The data do not rule out the possibility of other basolateral HCO3- transporters.


Assuntos
Proteínas de Transporte/metabolismo , Membranas Intracelulares/metabolismo , Túbulos Renais Proximais/metabolismo , Prótons , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/análogos & derivados , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Fenômenos Biomecânicos , Antiportadores de Cloreto-Bicarbonato , Cloretos/farmacologia , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Coelhos , Sódio/farmacologia , Simportadores de Sódio-Bicarbonato
13.
J Gen Physiol ; 92(3): 395-412, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3225555

RESUMO

We monitored intracellular pH (pHi) in isolated perfused S3 segments of the rabbit proximal tubule, and studied the effect of acetate (Ac-) transport on pHi. pHi was calculated from the absorbance spectrum of 4',5'-dimethyl-5-(and 6) carboxyfluorescein trapped intracellularly. All solutions were nominally HCO3(-)-free. Removal of 10 mM Ac- from bath and lumen caused pHi to rapidly rise by approximately 0.2, and then to decline more slowly to a value approximately 0.35 below the initial one. Removal of only luminal Ac- caused pHi changes very similar to those resulting from bilateral removal of Ac-. When Ac- was removed from bath only, pHi rose rapidly at first, and then continued to rise more slowly. Readdition of Ac- to bath caused pHi to rapidly fall to a value slightly higher than the one prevailing before the removal of Ac- from the bath. In experiments in which Ac- was first removed from both bath and lumen, readdition of 10 mM Ac- to only lumen caused a rapid but small acidification, followed by a slower alkalinization that brought the pHi near the value that prevailed before the bilateral removal of Ac-. The alkalinizing effects caused by the readdition of 10 or 0.5 mM Ac- were indistinguishable. When Ac- was returned to only lumen in the absence of luminal Na+, there was a small and rapid pHi decrease, but no pHi recovery. Removal of Na+ from bath did not affect the pHi transients caused by the addition of Ac- to lumen. In experiments in which Ac- was first removed bilaterally, readdition of Ac- to only bath caused a large and sustained drop in pHi, whereas the subsequent removal of Ac- from the bath caused a slight alkalinization. These pHi changes caused by readdition or removal of Ac- from baths were unaffected by the absence of external Na+. We conclude that there is a Na+/Ac- cotransporter at the luminal membrane, and pathways for acetic acid transport at both luminal and basolateral membranes. The net effect of Ac- transport on pHi is to alkalinize the cell as a result of the luminal entry of Na+/Ac-, which is followed by the luminal and basolateral exit of acetic acid.


Assuntos
Acetatos/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Perfusão , Fosfatos/metabolismo , Fosfatos/farmacologia , Coelhos , Sódio/metabolismo
14.
J Gen Physiol ; 92(3): 369-93, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3225554

RESUMO

We used the absorbance spectrum of 4',5'-dimethyl-5-(and 6) carboxyfluorescein to measure intracellular pH (pHi) in the isolated, perfused S3 segment of the rabbit proximal tubule. Experiments were conducted in HCO3- -free solutions. pHi recovered from an acid load imposed by an NH4+ prepulse, indicating the presence of one or more active acid-extrusion mechanisms. Removal of Na+ from bath and lumen caused pHi to decrease by approximately 0.6, whereas Na+ readdition caused complete pHi recovery. Removal of Na+ from the bath caused only a slow pHi decrease that was enhanced about fourfold when Na+ was subsequently removed from the lumen also. Similarly, the pHi recovery produced by the readdition of Na+ to the bath and lumen was about ninefold faster than when Na+ was returned to the bath only. Amiloride (1-2 mM) inhibited the pHi recovery that was elicited by returning 15 or 29 mM Na+ to lumen by only approximately 30%. However, in the absence of external acetate (Ac-), 1 mM amiloride inhibited approximately 66% of the pHi recovery induced by the readdition of 29 mM Na+ to the lumen only. The removal of external Ac- reduced the pHi recovery rate from an NH4+-induced acid load by approximately 47%, and that elicited by Na+ readdition, by approximately 67%. Finally, when bilateral removal of Na+ was maintained for several minutes, pHi recovered from the initial acidification, slowly at first, and then more rapidly, eventually reaching a pHi approximately 0.1 higher than the initial one. This Na+-independent pHi recovery was not significantly affected by lowering [HEPES]o from 32 to 3 mM or by adding N'N'-dicyclohexylcarbodiimide (10(-4) M) to the lumen, but it was reduced approximately 57% by iodoacetate (0.5 mM) plus cyanide (1 mM). We conclude that in the nominal absence of HCO3-, three transport systems contribute to acid extrusion by S3 cells: (a) a Na+-independent mechanism, possibly an H+ pump; (b) a Na-H exchanger, confined primarily to the luminal membrane; and (c) an Ac- and luminal Na+-dependent mechanism. The contribution of these three mechanisms to total acid extrusion, assessed by the rapid readdition of Na+, was approximately 13, approximately 30, and approximately 57%, respectively.


Assuntos
Bicarbonatos/farmacologia , Túbulos Renais Proximais/fisiologia , Amônia/farmacologia , Animais , Feminino , Fluoresceínas , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Túbulos Renais Proximais/efeitos dos fármacos , Cinética , Coelhos , Valores de Referência
15.
Ciba Found Symp ; 139: 91-105, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-3060326

RESUMO

Traditional models of acid-base transport and intracellular pH (pHi) regulation in the renal proximal tubule have been based on the existence of a Na+/H+ exchanger at the luminal membrane and a simple HCO3- conductance at the basolateral membrane. Our recent work, in which we used pH-sensitive microelectrodes or dyes to monitor pHi in isolated renal tubules perfused in the nominal absence of HCO3-, has demonstrated the existence of a novel mechanism of acid extrusion in amphibian and mammalian proximal tubule cells. The salamander proximal tubule, for example, possesses an electroneutral Na+ monocarboxylate (Na+-X-) co-transporter, but only at the luminal membrane. It also possesses an electroneutral H+-X- co-transporter, but only at the blood side or basolateral membrane. In the presence of lactate, the luminal Na+-lactate co-transporter mediates a net influx of lactate, driven by the Na+ gradient. The cell-to-blood lactate gradient, in turn, drives the coupled efflux of H+ and lactate across the basolateral membrane. The net effect is the reabsorption of lactate, the luminal uptake of Na+ and the basolateral extrusion of H+. Acid extrusion mediated by this monocarboxylate system in the salamander is comparable in magnitude to that mediated by the Na+/H+ exchanger. In the S3 segment of the rabbit proximal tubule, a similar monocarboxylate system (studied with acetate instead of lactate) extrudes acetate at twice the rate of the Na+/H+ exchanger. Thus, monocarboxylate transport, at least in the nominal absence of HCO3-, can have a major impact on pHi regulation.


Assuntos
Equilíbrio Ácido-Base , Ácidos Carboxílicos/metabolismo , Túbulos Renais Proximais/metabolismo , Acetatos/metabolismo , Ambystoma , Animais , Transporte Biológico , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Lactatos/metabolismo , Ácido Láctico , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...