Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793782

RESUMO

MF59 and AS03 are squalene emulsion-based vaccine adjuvants with similar compositions and droplet sizes. Despite their broad use in licensed influenza vaccines, few studies compared their adjuvant effects and action mechanisms side by side. Considering the majority of adjuvants act on dendritic cells (DCs) to achieve their adjuvant effects, this study compared MF59 and AS03-like adjuvants (AddaVax and AddaS03, respectively) to enhance antigen uptake, DC maturation, ovalbumin (OVA) and seasonal influenza vaccine-induced immune responses. Considering MF59 was reported to activate MyD88 to mediate its adjuvant effects, this study also investigated whether the above-explored adjuvant effects of AddaVax and AddaS03 depended on MyD88. We found AddaVax more potently enhanced antigen uptake at the local injection site, while AddaS03 more potently enhanced antigen uptake in the draining lymph nodes. AddaS03 but not AddaVax stimulated DC maturation. Adjuvant-enhanced antigen uptake was MyD88 independent, while AddaS03-induced DC maturation was MyD88 dependent. AddaVax and AddaS03 similarly enhanced OVA-induced IgG and subtype IgG1 antibody responses as well as influenza vaccine-induced hemagglutination inhibition antibody titers, whileAddaS03 more potently enhanced OVA-specific IgG2c antibody responses. Both adjuvants depended on MyD88 to enhance vaccine-induced antibody responses, while AddaVax depended more on MyD88 to achieve its adjuvant effects. Our study reveals similarities and differences of the two squalene emulsion-based vaccine adjuvants, contributing to our improved understanding of their action mechanisms.

2.
Biomater Adv ; 146: 213279, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708685

RESUMO

Colorectal cancer (CRC) ranks third among fatal diseases afflicting mankind globally due to the shortage of primary detection methods and appropriate choice of drugs. Moreover, current treatments such as chemo drugs and radiotherapies create adverse effects and lead to drug resistance. In this context, recent advances in nanomedicine offer novel clinical solutions for colon cancer therapy. The current study denotes the therapeutic roles of biogenic Abutilon indicum silver and gold nanoparticles (AIAgNPs and AIAuNPs) against a 1, 2-dimethyl hydrazine (DMH)-induced CRC in Wistar rats. Following treatment of nanoparticles (NPs), the CRC rats showed great localization of AIAgNPs and AIAuNPs in colon tumors shown by ICP-OES, indicating their bioavailability. The AIAgNPs and AIAuNPs significantly enhanced cellular antioxidant enzyme levels including catalase, SOD, GSH, GPx and reduced lipid peroxidation (LPO) compared to the standard drug paclitaxel. AIAgNPs and AIAuNPs revealed significant protection against metastasis compared to paclitaxel shown in the histopathological study. The important CRC signaling molecules of the Wnt pathway, the ß-catenin and Tcf-4 levels were significantly downregulated in AIAgNPs and AIAuNPs treated CRC rats compared to paclitaxel. Furthermore, the expression levels of cleaved apoptotic caspase-9, -8, and - 3 and lamins were significantly upregulated in AIAgNPs and AIAuNPs treated CRC rats compared to paclitaxel. This preclinical study provides substantial insights into the anti-colon cancer roles of biogenic NPs and gives an idea for targeting different cancers.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Animais , Ratos , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Ouro , Nanopartículas Metálicas/uso terapêutico , Paclitaxel/efeitos adversos , Ratos Wistar , Prata/uso terapêutico , 1,2-Dimetilidrazina/farmacologia
3.
Acta Biomater ; 141: 24-38, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958971

RESUMO

Immunomodulation is an important phenomenon in the normal mammalian host response toward an injury, and plays a critical role in tissue regeneration and regenerative medicine. Different phenotypes of macrophages show an array of activation states compassing pro-inflammatory to pro-alleviating cells, which are the critical players to modulate immune response and tissue regeneration. In this study, macrophage membranes of different phenotypes (macrophages (M0), classically activated macrophages (M1) and alternatively activated macrophages (M2)) were coated onto poly-ε-caprolactone (PCL) nanofibers to acquire exterior surface proteins and similar functions of the natural membranes. In vitro results unveiled that these nanofibers, especially the M2-PCL nanofibers, can suppress the activities of inflammatory markers such as TNF-α and IL-1ß, and stimulate anti-inflammatory markers such as Arg-1, IL-10 and TGF-ß. In a C57BL/6 mouse model, the macrophage membrane-coated nanofibers, especially the M2-PCL nanofibers, displayed minimal cellular infiltration and low collagen deposition, increased anti-inflammatory CD206 and decreased inflammatory CD86 levels. The M2-PCL nanofibers most effectively neutralized inflammatory chemokines, regulated the expression of inflammation-associated genes as well as anti-inflammatory genes, and showed strong immunomodulatory effects than the PCL, M0-PCL and M1-PCL nanofibers. STATEMENT OF SIGNIFICANCE: Different types of macrophage membrane-functionalized PCL nanofibers were successfully prepared and well characterized. They inherited the surface proteins imitating the source macrophages, and played an important role in limiting cellular infiltration and collagen deposition. These different macrophages and their membrane-coated nanofibers (M0-PCL, M1-PCL and M2-PCL) behaved like their respective source cells. The M2 mimicking M2-PCL nanofibers effectively polarized macrophages to M2 phenotype and decreased the expression of inflammation-associated chemokines and promoted the anti-inflammation in vitro and in vivo, which is critical for tissue regeneration. The mice implanted with the bio-mimicking M2-PCL nanofibers effectively inhibited toll like receptors signaling induced NF-kB and IRF-5 and their target genes such as Edn-1, IL-6, iNOS, TNF-α, etc. compared to the PCL, and M0-PCL and M1-PCL macrophage membrane-coated nanofibers.


Assuntos
Nanofibras , Animais , Anti-Inflamatórios/farmacologia , Quimiocinas/metabolismo , Colágeno/metabolismo , Imunidade , Imunomodulação , Inflamação/metabolismo , Macrófagos/metabolismo , Mamíferos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
4.
Small ; 17(17): e2006992, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33719217

RESUMO

Cellular metabolism plays a major role in the regulation of inflammation. The inflammatory macrophages undergo a wide-range of metabolic rewriting due to the production of significant amount of itaconate metabolite from cis-aconitate in the tricarboxylic acid cycle. This itaconate molecule has been recently described as a promising immunoregulator. However, its function and mode of action on macrophages and tissue repair and regeneration are yet unclear. Herein, the itaconate-derivative dimethyl itaconate (DMI) suppresses the IL-23/IL-17 inflammatory axis-associated genes and promotes antioxidant nuclear factor erythroid 2-related factor 2 target genes. The poly-ε-caprolactone (PCL)/DMI nanofibers implanted in mice initially maintain inflammation by suppressing anti-inflammatory activity and particular inflammation, while at later stage promotes anti-inflammatory activity for an appropriate tissue repair. Furthermore, the PCL/DMI nanofiber patches show an excellent myocardial protection by reducing infarct area and improving ventricular function via time-dependent regulation of myocardium-associated genes. This study unveils potential DMI macrophage modulatory functions in tissue microenvironment and macrophages rewriting for proper tissue repair.


Assuntos
Nanofibras , Animais , Infarto , Inflamação , Macrófagos , Camundongos , Succinatos
5.
Acta Biomater ; 123: 1-30, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484912

RESUMO

The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/farmacologia , Humanos , Imunidade , Inflamação , Cicatrização
6.
Small ; 16(48): e2005038, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169516

RESUMO

The excessive reactive oxygen species (ROS) and hypoxia deteriorate the inflammation-related diseases such as myocardial infarction (MI), and thereby deter the normal tissue repair and recovery and further lead to severe fibrosis and malfunction of tissues and organs. In particular, the MI has become one of the leading causes of death nowadays. In this study, a novel type of injectable hydrogel with dual functions of ROS scavenging and O2 generating is fabricated for MI treatment in vivo. The hydrogel is formed within 3 s from the synthetic ROS-cleavable hyperbranched polymers and methacrylate hyaluronic acid (HA-MA) under UV-irradiation. Addition of biocompatible and applicable catalase in vivo enables the further transition of H2 O2 , a major type of ROS, to O2 and H2 O. Results of rat MI model demonstrate that this hydrogel can significantly remove excessive ROS, inhibit cell apoptosis, increase M2/M1 macrophage ratio, promote angiogenesis, reduce infarcted area, and improve cardiac functions. With the appropriate degradation rate, simple structure and composition without cell seeding, and very excellent MI therapeutic effect, this ROS scavenging and O2 generating hydrogel has a great promise to be applied clinically.


Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Ácido Hialurônico , Infarto do Miocárdio/tratamento farmacológico , Ratos , Espécies Reativas de Oxigênio , Cicatrização
7.
Colloids Surf B Biointerfaces ; 192: 111075, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32403015

RESUMO

The importance of inflammatory tissue microenvironment on the repair and regeneration of tissues and organs has been well recognized. In particular, the phenotypes of macrophages can significantly influence on the processes of tissue repair and remodeling. Among the many types of biomaterials, the particles in the range from nanometers to submicron meters have been extensively studied and applied in tissue engineering and regenerative medicine. They can actively interact with cells in different levels, and show the ability to regulate the polarization of macrophages. In this review, the influence of physicochemical properties such as size, surface charge, chemical components and surface modification of micro-nanoparticles on the immune behavior of macrophages, including endocytosis and phenotype switch, shall be introduced. The important roles of nanoparticles-based immunoregulation of macrophages on the chronic skin wounds regeneration, myocardial repair, liver repair and bone regeneration are discussed.

8.
Biomaterials ; 246: 120012, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276198

RESUMO

The immune system responds immediately to tissue trauma and to biomaterial implants under the participation of M1/M2 macrophages polarization. The surface properties of biomaterials can significantly influence the tissue repair progress through modulating the macrophage functions. In this study, the surface of poly(propylene fumarate) polyurethane films (PPFU) is grafted with a same density of enantiomeric poly-l-lysine (PPFU-g-PLL) and poly-d-lysine (PPFU-g-PDL), leading to a similar level of enhanced surface wettability for the PPFU-g-PLL and PPFU-g-PDL. The polylysine-grafted PPFU can restrict the M1 polarization, whereas promote M2 polarization of macrophages in vitro, judging from the secretion of cytokines and expression of key M1 and M2 related genes. Comparatively, the PPFU-g-PDL has a stronger effect in inducing M2 polarization in vivo, resulting in a thinner fibrous capsule surrounding the implant biomaterials. The CD44 and integrins of macrophages participate in the polarization process probably by activating focal adhesion kinase (FAK) and Rho-associated protein kinase (ROCK), and downstream PI3K/Akt1/mTOR signal axis to up regulate M2 related gene expression. This study confirms for the first time that polylysine coating is an effective method to regulate the immune response of biomaterials, and the polylysine-modified thermoplastic PPFU with the advantage to promote M2 polarization may be applied widely in regenerative medicine.


Assuntos
Polilisina , Poliuretanos , Macrófagos , Fenótipo , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR
9.
ACS Appl Mater Interfaces ; 12(7): 7915-7930, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31935055

RESUMO

Regeneration and functional recovery of peripheral nerves remain formidable due to the inefficient physical and chemical cues in the available nerve guidance conduits (NGCs). Introducing micropatterns and bioactive substances into the inner wall of NGCs can effectively regulate the behavior of Schwann cells, the elongation of axons, and the phenotype of macrophages, thereby aiding the regeneration of injured nerve. In this study, linear micropatterns with ridges and grooves of 3/3, 5/5, 10/10, and 30/30 µm were created on poly(d,l-lactide-co-caprolactone) (PLCL) films following with surface aminolysis and electrostatic adsorption of graphene oxide (GO) nanosheets. The GO-modified micropatterns could significantly accelerate the collective migration of Schwann cells (SCs) and migration of SCs from their spheroids in vitro. Moreover, the SCs migrated directionally along the stripes with a fastest rate on the 3/3-GO film that had the largest cell adhesion force. The neurites of N2a cells were oriented along the micropatterns, and the macrophages tended to differentiate into the M2 type on the 3/3-GO film judged by the higher expression of Arg 1 and IL-10. The systematic histological and functional assessments of the regenerated nerves at 4 and 8 weeks post-surgery in vivo confirmed that the 3/3-GO NGCs had better performance to promote the nerve regeneration, and the CMAP, NCV, wet weight of gastrocnemius muscle, positive S100ß and NF200 area percentages, and average myelinated axon diameter were more close to those of the autograft group at 8 weeks. This type of NGCs thus has a great potential for nerve regeneration.


Assuntos
Caproatos/química , Grafite/química , Regeneração Tecidual Guiada/métodos , Lactonas/química , Nanoestruturas/química , Regeneração Nervosa/fisiologia , Nervo Isquiático/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Arginase/metabolismo , Axônios/efeitos dos fármacos , Axônios/fisiologia , Movimento Celular/fisiologia , Dioxanos/química , Regeneração Tecidual Guiada/instrumentação , Interleucina-10/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Músculo Esquelético/fisiologia , Nanoestruturas/uso terapêutico , Nanoestruturas/ultraestrutura , Neovascularização Fisiológica/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/fisiologia , Neuritos/ultraestrutura , Polímeros/química , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/fisiologia , Engenharia Tecidual/instrumentação , Cicatrização/fisiologia
10.
Mater Sci Eng C Mater Biol Appl ; 91: 372-381, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033267

RESUMO

In this study, silver nanoparticles were synthesized (AgNPs) using aqueous rhizome extract of Acorus calamus (ACRE) and evaluated their in vitro anticancer activity and in vivo toxicity in a Wistar rat model. The synthesized AgNPs showed good catalytic activity against different organic pollutant dyes. In vitro cytotoxic effects of AgNPs were assessed in Hep2, COLO 205 and SH-SY5Y cells using MTT assay. Further, the apoptotic changes induced by AgNPs in more susceptible Hep2 cells were observed through AO/EB, DCFH-DA, Rhodamine 123, PI/DAPI staining, oxidative stress markers and Western blotting. In vivo toxicity study revealed substantial alterations in the levels of serum biochemical markers including AST, ALT, LDH and inflammatory markers such as TNF-α and IL-6 on day 29 when rats treated with AgNPs as compared to control, however, these levels were restored to normal at the end of washout period on day 89. No remarkable changes were observed in liver oxidative stress enzymes. ICP-OES analysis indicated bio-distribution of silver in spleen (5.67 µg/g) and liver (4.98 µg/g) in rats treated with 10 mg/kg b.w of AgNPs on day 29 and elimination of silver from all organs was observed at the end of washout period on day 89. Histopathological analysis revealed no significant changes in kidney, spleen, lungs, heart, testis and brain with 5 and 10 mg/kg b.w of AgNP. However, 10 mg/kg b.w of AgNPs showed moderate degree of cell swelling and vacuolar degeneration in liver and these alterations were reverted back to normal at the end of washout period. Findings from this study signify green synthesized AgNPs at low concentrations might be useful in many ways with ecofriendly nature.


Assuntos
Biomarcadores Tumorais/metabolismo , Corantes Fluorescentes/química , Nanopartículas Metálicas , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Prata , Acorus/química , Animais , Catálise , Linhagem Celular Tumoral , Humanos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Ratos Wistar , Rizoma/química , Prata/química , Prata/farmacocinética , Prata/farmacologia
11.
J Trace Elem Med Biol ; 48: 157-165, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29773174

RESUMO

This study reports the bio-distribution and clearance of Abutilon indicum silver and gold nanoparticles (AIAgNPs and AIAuNPs) in Wistar rats. Rats in different groups were orally administered with 5 and 10 mg/Kg BW of AIAgNPs and AIAuNPs (size 1-25 nm) for 28 days and few were maintained until 58 days of washout period. Serum biochemical parameters were not changed significantly at both doses of AIAuNPs and at lower concentration of AIAgNPs. But, with 10 mg/Kg BW of AIAgNPs rats showed elevated levels of AST, ALP and ALT on day 29, however, these levels were restored to normal after washout period. Liver oxidative stress markers were not altered with the treatment of AIAgNPs and AIAuNPs. ICP-OES analysis indicated bio-distribution of Ag and Au more in liver, kidney and spleen on day 29 and was found cleared on day 59. Histological analysis of nine vital organs indicated normal tissue architecture at both doses of AIAuNPs and lower dose of AIAgNPs. While the rats treated with higher dose of AIAgNPs showed mild liver sinusoid cell swelling on day 29, which also was recovered on day 59. Findings of this preclinical study indicate biocompatible nature of biogenic nanoparticles supporting their future biomedical applications.


Assuntos
Ouro/farmacocinética , Ouro/toxicidade , Nanopartículas Metálicas/química , Prata/farmacocinética , Prata/toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Ouro/administração & dosagem , Masculino , Nanopartículas Metálicas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Prata/administração & dosagem , Distribuição Tecidual
12.
J Colloid Interface Sci ; 499: 33-45, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363102

RESUMO

Green synthesis of nanoparticles using plants is gaining much interest in recent years. Anyway, intricate details on the role of phytochemicals involved in capping and stabilization of nanoparticles in diminishing toxicity and enhancing therapeutic potential are required. In this study, Ficus religiosa silver nanoparticles (FRAgNPs) were synthesized using Ficus religiosa leaf extract (FRLE) and characterized. The FRAgNPs showed good antibacterial activity and also cytotoxic effect in different cancer cell lines. Induction of apoptotic cell death was confirmed by various staining techniques, increased expression of cleaved caspases-8, 9, 3, lamin, PARP and oxidative stress markers in A549 and Hep2 cells. The in vivo studies performed in rats revealed significant increase in serum levels of AST, ALT, and LDH, TNF-α and IL-6 on day 29 following oral administration of FRAgNPs. However, these levels reverted back to normal at the end of wash out period on day 89. ICP-OES analysis revealed accumulation of silver in liver, brain and lungs on day 29 with respective concentration of 4.77, 3.94 and 3.043µg/g tissue. However, complete elimination of silver was observed on day 89. Histological analysis performed in vital organs indicated pathological changes only in liver which was also normalized after 89days.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Prata/química , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ficus/química , Química Verde , Humanos , Masculino , Tamanho da Partícula , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Distribuição Tecidual
13.
Colloids Surf B Biointerfaces ; 143: 499-510, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27038915

RESUMO

Green synthesized gold nanoparticles have received substantial attention owing to their biomedical applications, particularly in cancer therapy. Although anticancer activities of green synthesized gold nanoparticles have been reported earlier, the underlying mechanism behind their anticancer activity is still to be understood. The present study, describes the green synthesis of Abutilon indicum gold nanoparticles (AIGNPs) from Abutilon indicum leaf extract (AILE) and their cytotoxic mechanism in colon cancer cells. Dimensions of spherical shaped AIGNPs were found to be in the range of 1-20nm as determined by TEM. GC-MS and FTIR analysis indicated the presence of polyphenolic groups in AILE, which might have been involved in the stabilization of AIGNPs. In vitro free radical scavenging analysis revealed the radical quenching activity of AIGNPs. Further, the AIGNPs exhibited cytotoxicity in HT-29 colon cancer cells with IC50 values of 210 and 180µg/mL after 24 and 48h. This was mediated through nuclear morphological changes and cell membrane damage as evidenced by acridine orange/ethidium bromide, propidium iodide and AnnexinV-Cy3 staining methods. Mechanism of the observed cytotoxicity of AIGNPs was explained on the basis of increased levels of reactive oxygen species and simultaneous reduction in cellular antioxidants, which might have caused mitochondrial membrane potential loss, DNA damage and G1/S phase cell cycle arrest. Expression of cleaved Caspase-9, Caspase-8, Caspase-3, Lamin A/C and PARP, provided the clues for the induction of intrinsic and extrinsic apoptosis pathways in AIGNPs treated HT-29 cells. The study provides a preliminary guidance towards the development of colon cancer therapy using green synthesized gold nanoparticles.


Assuntos
Antineoplásicos/química , Coloide de Ouro/química , Malvaceae/química , Nanopartículas Metálicas/química , Folhas de Planta/química , Polifenóis/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Membrana Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Coloide de Ouro/farmacologia , Química Verde , Células HT29 , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Tamanho da Partícula , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Polifenóis/isolamento & purificação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
Colloids Surf B Biointerfaces ; 128: 276-286, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25701118

RESUMO

Green synthesis of silver nanoparticles using biological entities is gaining interest because of their potential applications in nano-medicine. Herein, we report the biological synthesis of Abutilon indicum silver nanoparticles (AIAgNPs) using aqueous Abutilon indicum leaf extract (AILE) and evaluation of their biological applications. TEM analysis revealed that the spherical biogenic AIAgNPs were found to be between 5 and 25 nm in size. The bioactive phyto-constituents such are condensed tannins of AILE were found to play a key role in the reduction and capping of AIAgNPs. The biological properties of AIAgNPs were premeditated as free radical scavenging activity, antibacterial effect and anti-proliferative activity. AIAgNPs were found to exhibit good free radical scavenging activities and the intense zone of inhibition displayed by them in six different pathogenic species indicate the potential antibacterial effect. Further, AIAgNPs showed a dose dependant anti-proliferative effect against COLO 205 (human colon cancer) and MDCK (normal) cells with an IC50 of 3 and 4 µg/mL and 100 and 75 µg/mL, respectively after 24 and 48 h. The morphological changes, chromatin condensation and membrane potential loss induced by AIAgNPs were evidenced by AO/EB and AnnexinV-Cy3 staining. The mitochondrial membrane potential (MMP) loss and G1/S transition cell cycle arrest in COLO 205 cells was evidenced in rhodamine123 staining and FACS analysis. The high levels of ROS as shown in DCF-DA staining could have played a major role in DNA fragmentation and eventually lead to apoptosis. The mode of action through the induction apoptosis by AIAgNPs in COLO 205 cells is exciting with promising application of nano-materials in biomedical research.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Malvaceae/química , Nanopartículas Metálicas/química , Prata/química , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cães , Sequestradores de Radicais Livres/síntese química , Química Verde , Humanos , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Tamanho da Partícula , Extratos Vegetais/química , Folhas de Planta/química , Taninos/química
15.
Eur J Med Chem ; 85: 784-94, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25147142

RESUMO

Nanomedicine utilize biocompatible nanomaterials for diagnostic and therapeutic purposes. This study reports the synthesis of silver nanoparticles using aqueous rhizome extract of Acorus calamus (ACRE) and evaluation of antioxidant, antibacterial as well as anticancer effects of synthesized A. calamus silver nanoparticles (ACAgNPs). The formation of ACAgNPs was confirmed by UV-visible spectroscopy and their average size was found to be 31.83 nm by DLS particle size analyzer. Scanning electron micrograph (SEM) revealed spherical shape of ACAgNPs and energy dispersive spectroscopy (EDX) data showed the presence of metallic silver. Fourier transform infrared spectroscopy (FTIR) analysis indicated the presence of phenol/alcohol, aromatic amine and carbonyl groups in ACRE that were involved in reduction and capping of nanoparticles. ACRE and ACAgNPs exhibited substantial free radical quenching ability in various in vitro antioxidant assays performed in this study. ACAgNPs also displayed appreciable antibacterial activity against three different pathogenic bacteria and the growth kinetic study with Escherichia coli designated the inhibition of bacterial growth at the log phase. The cytotoxic effect of ACAgNPs was assessed by MTT assay in HeLa and A549 cells. The IC50 value of ACAgNPs respectively after 24 and 48 h was found to be 92.48 and 69.44 µg/ml in HeLa cells and in A549 cells it was 53.2 and 32.1 µg/ml. Apoptotic cell death in ACAgNPs treated cells was indicated by acridine orange/ethidium bromide (AO/EB) and annexinV-Cy3 staining techniques. Staining with propidium iodide (PI) and 4', 6-diamidino-2-phenylindole, dihydrochloride (DAPI) also confirmed nuclear changes such as condensation and fragmentation. Further, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed distribution of ACAgNPs treated cells in the late apoptotic stage. These findings emphasize that such biocompatible green nanoparticles with multifaceted biological activities may find their applications in the field of nanomedicine.


Assuntos
Acorus/química , Química Verde , Nanopartículas Metálicas , Extratos Vegetais/química , Rizoma/química , Prata/química , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Concentração Inibidora 50 , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...