Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 183(9): 2765-73, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11292794

RESUMO

Protein D has previously been demonstrated to be associated with Escherichia coli ribosomes by the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. In this study, we show that protein D is exclusively present in the 30S ribosomal subunit and that its gene is located at 33.6 min on the E. coli genetic map, between ompC and sfcA. The gene consists of 45 codons, coding for a protein of 5,096 Da. The copy number of protein D per ribosomal particle varied during growth and increased from 0.1 in the exponential phase to 0.4 in the stationary phase. For these reasons, protein D was named SRA (stationary-phase-induced ribosome-associated) protein and its gene was named sra. The amount of SRA protein within the cell was found to be controlled mainly at the transcriptional level: its transcription increased rapidly upon entry into the stationary phase and was partly dependent on an alternative sigma factor (sigma S). In addition, global regulators, such as factor inversion stimulation (FIS), integration host factor (IHF), cyclic AMP, and ppGpp, were found to play a role either directly or indirectly in the transcription of sra in the stationary phase.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Eletroforese em Gel Bidimensional , Escherichia coli/química , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Deleção de Genes , Genoma Viral , Fatores Hospedeiros de Integração , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Ribossômicas/química , Fase S , Alinhamento de Sequência , Fator sigma/genética , Transcrição Gênica
2.
Biochemistry ; 37(50): 17537-44, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9860869

RESUMO

To elucidate the energetic features of the anomalously high-level stabilization of a hyperthermophile pyrrolidone carboxyl peptidase (PfPCP) from a hyperthermophilic archaeon, Pyrococcus furiosus, equilibrium and kinetic studies of the guanidine hydrochloride (GuHCl)-induced unfolding and refolding were carried out with CD measurements at 220 nm in comparison with those from the mesophile homologue (BaPCP) from Bacillus amyloliquefaciens. The mutant protein of PfPCP substituted with Ser at both Cys142 and Cys188 (PfC142/188S) was used. The GuHCl unfolding for PfC142/188S and BaPCP was reversible. It was difficult to obtain the equilibrated unfolding curve of the hyperthermophile proteins at temperatures below 50 degreesC and pH 7, because of the remarkably slow rate of the unfolding. The unfolding for PfC142/188S attained equilibrium after 7 days at 60 degreesC, resulting in the coincidence between the unfolding and refolding curves. The Gibbs energy change of unfolding, DeltaGH2O (56.6 kJ/mol), for PfC142/188S at 60 degreesC and pH 7 was dramatically higher than that (7.6 kJ/mol) for BaPCP at 40 degreesC and pH 7. The unfolding and refolding kinetics for PfC142/188S and BaPCP at both 25 and 60 degreesC at pH 7 were approximated as a single exponential. The rate constant in water (kuH2O) of the unfolding reaction for PfC142/188S (1.6 x 10(-)15 s-1) at 25 degreesC and pH 7 was drastically reduced by 7 orders of magnitude compared to that (1.5 x 10(-)8 s-1) for BaPCP, whereas the refolding rates (krH2O) in water for PfC142/188S (9.3 x 10(-)2 s-1) and BaPCP (3.6 x 10(-)1 s-1) at 25 degreesC and pH 7 were similar. These results indicate that the greater stability of the hyperthermophile PCP was characterized by the drastically slow unfolding rate.


Assuntos
Guanidina/farmacologia , Dobramento de Proteína , Pyrococcus furiosus/enzimologia , Piroglutamil-Peptidase I/química , Piroglutamil-Peptidase I/metabolismo , Dicroísmo Circular , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Temperatura Alta , Cinética , Termodinâmica
3.
J Biochem ; 124(4): 778-83, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9756623

RESUMO

A gene for a pyrrolidone carboxyl peptidase (Pcp: EC 3.4.19.3, pyroglutamyl peptidase), which removes amino-terminal pyroglutamyl residues from peptides and proteins, has been cloned from the hyperthermophilic Archaeon Pyrococcus furiosus using its cosmid protein library, sequenced, and expressed in Escherichia coli. The DNA sequence encodes a protein containing 208 amino acid residues with methionine at the N-terminus. Analysis of the recombinant protein expressed in E. coli, including amino acid sequence analysis from the N-terminus by automated Edman degradation and ionspray mass spectrometric analysis of the peptides generated by enzymatic digestions with lysylendopeptidase and Staphylococcus aureus V8 protease, showed its primary structure to be completely identical with that deduced from its cDNA sequence. Comparison of the amino acid sequence of P. furiosus Pcp (P.f.Pcp) with those of bacterial Pcps revealed that a high degree of sequence identity (more than 40%) and conservation of the amino acid residues comprising the catalytic triad, Cys142, His166, and Glu79. On the other hand, a unique short stretch sequence (positions around 175-185) that is absent in bacterial Pcps was found in P.f.Pcp. A similar stretch has also been reported recently in the amino acid sequence of Pcp from the hyperthermophilic Archaeon Thermococcus litoralis [Littlechild et al., in abstracts of the "International Congress on Exthermophiles '98" p. 58 (1998)]. To elucidate their contribution to the hyperthermostability of these enzymes, further structural studies are required.


Assuntos
Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Piroglutamil-Peptidase I/genética , Piroglutamil-Peptidase I/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Endopeptidases , Estabilidade Enzimática , Escherichia coli , Genes Bacterianos , Temperatura Alta , Cinética , Metionina , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Piroglutamil-Peptidase I/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
4.
Biosci Biotechnol Biochem ; 59(3): 408-11, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7766176

RESUMO

When D-glucosaminate dehydratase (GADH) was incubated with D-glucosaminate (GlcNA) in veronal buffer (VB; 0.01 M, pH 8.0), GlcNA was converted stoichiometrically to glyceraldehyde, pyruvate, and ammonia (aldolase reaction A). This reaction occurred in addition to the dehydratase reaction (conversion of GlcNA to 2-keto-3-deoxy-D-gluconate and ammonia: alpha,beta-elimination reaction, B). The ratio of the activities (A:B) was about 1:4. However, in potassium phosphate buffer (KPB; 0.04 M, pH 8.0), the aldolase reaction was inhibited to 3-4% of that in VB, and also inhibited by various derivatives of glycerol, in particular, glycerol-3-phosphate (glycerol-3-P) and glyceraldehyde-3-phosphate (glyceraldehyde-3-P) in VB. The native enzyme was inhibited by incubation with 0.1 M EDTA, and the activity was restored by incubation of the EDTA-treated enzyme with (Mn2+ + pyridoxal 5'-phosphate (PLP)). When the EDTA-treated enzyme was incubated with (Mn2+ + PLP + glycerol-3-P), the activity of reaction B increased to 131% but that of reaction A decreased to 21%. These results suggested that Mn2+, PLP, and the phosphate group of glycerol-3-P are involved in formation of the active enzyme. In the case of the aldolase reaction, Mn2+ ion, which might be essential for the reaction, is chelated by the phosphate group of glycerol-3-P with resultant inhibition of the aldolase reaction.


Assuntos
Aldeído Liases/metabolismo , Hidroliases/metabolismo , Manganês/metabolismo , Pseudomonas fluorescens/enzimologia , Aldeído Liases/isolamento & purificação , Cromatografia em Camada Fina , Ácido Edético/farmacologia , Glicerol/farmacologia , Hidroliases/isolamento & purificação , Cinética
5.
Biosci Biotechnol Biochem ; 57(7): 1058-61, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27280985

RESUMO

D-Glucosaminate (D-GlcNA) dehydratase from Pseudomonas fluorescens was inhibited stoichiometrically by metal-chelating agents (EDTA, 8-hydroxyquinoline-5-sulfonic acid, α,α'-dipyridyl and o-phenan-throline). The activity of EDTA-treated enzyme was restored by incubation with Mn(2+) (0.4mM) or Ca(2+) (2mM) in the presence of pyridoxal 5'-phosphate (PLP, 0.2mM) in veronal buffer (VB, 40 mM, pH 8) at 37°C for 30 min. The atomic absorption spectrum of the native enzyme showed that the enzyme contained 1 mol of Mn(2+) per mole of enzyme. Although the EDTA-treated enzyme was unstable at 4°C, addition of Mn(2+) and PLP to the solution of the EDTA-treated enzyme prevented the inactivation. The Km of the restored enzyme for D-GlcNA was somewhat lower than that of the original enzyme. However, the Km for PLP increased 14-fold. These results suggest that D-GlcNA dehydratase contains Mn(2+) near the PLP-binding site, and the metal ion appears to stabilize the structure of the active site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...