Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(33): 22040-22054, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555468

RESUMO

The present work demonstrates the effect of temperature-dependent surface modification (SM) treatment and its influence in broadening the catalysis regime with Pd-TiO2 catalysts prepared by various methods. Due to SM induced changes, a shift in the onset of CO oxidation activity as well as broadening of the oxidation catalysis regime by 30 to 65 K to lower temperatures is observed compared to the temperature required for virgin counterparts. SM carried out at 523 K for PdPhoto-TiO2 exhibits the lowest onset (10% CO2 production - T10) and T100 for CO oxidation at 360 and 392 K, respectively, while its virgin counterpart shows T10 and T100 at 393 and 433 K, respectively. The SMd Pd-TiO2 catalysts were investigated using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and atomic force microscopy (AFM). It is observed that diffusion of atomic oxygen into Pd-subsurfaces leads to SM and changes the nature of the surface significantly. These changes are demonstrated by work function (ϕ), surface potential, catalytic activity, and correlation among them. UPS results demonstrate the maximum increase in ϕ by 0.5 eV for PdPhoto-TiO2 after SM, compared to all other catalysts. XPS study shows a moderate to severe change in the oxidation states of Pd due to atomic oxygen diffusion into the subsurface layers of Pd. Kelvin probe force microscopy (KPFM) study also reveals corroborating evidence that the surface potential increases linearly with increasing temperature deployed for SM up to 523 K, followed by a marginal decrease at 573 K. The ϕ measured by KPFM and UPS shows a similar trend and correlates well with the changes in catalysis observed. Our results indicate that there is a strong correlation between surface physical and chemical properties, and ϕ changes could be considered as a global marker for chemical reactivity.

2.
J Synchrotron Radiat ; 30(Pt 3): 613-619, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067260

RESUMO

The Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS) endstation at the SPECIES beamline at MAX IV Laboratory has been improved. The latest upgrades help in performing photo-assisted experiments under operando conditions in the mbar pressure range using gas and vapour mixtures whilst also reducing beam damage to the sample caused by X-ray irradiation. This article reports on endstation upgrades for APXPS and examples of scientific cases of in situ photocatalysis, photoreduction and photo-assisted atomic layer deposition (photo-ALD).

3.
Chem Asian J ; 18(6): e202201239, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716268

RESUMO

The present study reports on the photocatalytic oxidation of butanols to butanal/butanone using thin film form of facet-dependent nano-Pd supported on commercial TiO2 under one-sun condition and demonstrates the generic nature. Pd-nanocube (PdNC (100)), Pd-truncated octahedron (PdTO (100) and (111)), polycrystalline (PdPC ), and their counterparts with half-a-monolayer Pt-coated on Pd (0.5θPt -Pd)) have been used as co-catalyst. A potentially scalable thin film form of Pd/TiO2 photocatalyst, prepared by drop-casting method, has been employed to study oxidation of n-butanol, 2-butanol, and iso-butanol to corresponding aldehyde/ketone. 100% selectivity is demonstrated to respective aldehyde/ketone with any catalyst used in the present study with varying degree of butanols conversion by NMR. 0.5θPt -PdTO /TiO2 shows the highest conversion of 2-butanol to butanone (13.6% in 4 h). Continuous 10 h of reaction with the most active 0.5θPt -PdTO /P25 catalyst demonstrates 31% conversion of 2-butanol to butanone, and catalyst recyclability has been demonstrated. The present protocol can be scalable to large scales to maximize the conversion in direct sunlight. Due to its generic nature, the current method can also be applied to many other alcohols and substrate molecules.

5.
ACS Appl Mater Interfaces ; 12(27): 30420-30430, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531153

RESUMO

Pt is the best cocatalyst for hydrogen production. It is also well-known that the surface atomic layer is critical for catalysis. To minimize the Pt content as cocatalyst, herein we report on half-a-monolayer of Pt (0.5θPt) decorated on earth-abundant Ni-Cu cocatalyst, which is integrated with a quasi-artificial leaf (QuAL) device (TiO2/ZnS/CdS) and demonstrated for efficient solar hydrogen production. For the QuAL, TiO2 is sensitized with ZnS and CdS quantum dots by the SILAR method. The 0.5θPt-decorated Ni-Cu shows an onset potential of 0.05 V vs reversible hydrogen electrode for the hydrogen evolution reaction, which is almost similar to that of commercial Pt/C. Photoactivity of the present QuAL device with either bulk Pt or 0.5θPt-coated Ni-Cu cocatalyst is, surprisingly, equal. Our findings underscore that a fraction of a monolayer of Pt can enhance the activity of the cocatalyst, and it is worth exploring further for the high activity associated with atomic Pt and other noble metals.

6.
Front Chem ; 7: 648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637231

RESUMO

Shape-controlled precious metal nanoparticles have attracted significant research interest in the recent past due to their fundamental and scientific importance. Because of their crystallographic-orientation-dependent properties, these metal nanoparticles have tremendous implications in electrocatalysis. This review aims to discuss the strategies for synthesis of shape-controlled platinum (Pt) and palladium (Pd) nanoparticles and procedures for the surfactant removal, without compromising their surface structural integrity. In particular, the electrocatalysis of oxygen reduction reaction (ORR) on shape-controlled nanoparticles (Pt and Pd) is discussed and the results are analyzed in the context of that reported with single crystal electrodes. Accepted theories on the stability of precious metal nanoparticle surfaces under electrochemical conditions are revisited. Dissolution, reconstruction, and comprehensive views on the factors that contribute to the loss of electrochemically active surface area (ESA) of nanoparticles leading to an inevitable decrease in ORR activity are presented. The contribution of adsorbed electrolyte anions, in-situ generated adsorbates and contaminants toward the ESA reduction are also discussed. Methods for the revival of activity of surfaces contaminated with adsorbed impurities without perturbing the surface structure and its implications to electrocatalysis are reviewed.

7.
ACS Appl Mater Interfaces ; 11(36): 32869-32878, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414793

RESUMO

In the present work, we have synthesized noble bimetallic nanoparticles (Au-Pd NPs) on a carbon-based support and integrated with titania to obtain Au-Pd/C/TiO2 and Au-Pd/rGO/TiO2 nanocomposites using an ecofriendly hydrothermal method. Here, a 1:1 (w/w) Au-Pd bimetallic composition was dispersed on (a) high-surface-area (3000 m2 g-1) activated carbon (Au-Pd/C), prepared from a locally available plant source (in Assam, India), and (b) reduced graphene oxide (rGO) (Au-Pd/rGO); subsequently, they were integrated with TiO2. The shift observed in Raman spectroscopy demonstrates the electronic integration of the bimetal with titania. The photocatalytic activity of the above materials for the hydrogen evolution reaction was studied under 1 sun conditions using methanol as a sacrificial agent in a powder form. The photocatalysts were also employed to prepare a thin film by the drop-casting method. Au-Pd/rGO/TiO2 exhibits 43 times higher hydrogen (H2) yield in the thin film form (21.50 mmol h-1 g-1) compared to the powder form (0.50 mmol h-1 g-1). On the other hand, Au-Pd/C/TiO2 shows 13 times higher hydrogen (H2) yield in the thin film form (6.42 mmol h-1 g-1) compared to the powder form (0.48 mmol h-1 g-1). While powder forms of both catalysts show comparable activity, the Au-Pd/rGO/TiO2 thin film shows 3.4 times higher activity than that of Au-Pd/C/TiO2. This can be ascribed to (a) an effective separation of photogenerated electron-hole pairs at the interface of Au-Pd/rGO/TiO2 and (b) the better field effect due to plasmon resonance of the bimetal in the thin film form. The catalytic influence of the carbon-based support is highly pronounced due to synergistic binding interaction of bimetallic nanoparticles. Further, a large amount of hydrogen evolution in the film form with both catalysts (Au-Pd/C/TiO2 and Au-Pd/rGO/TiO2) reiterates that charge utilization should be better compared to that in powder catalysts.

8.
RSC Adv ; 9(11): 6094-6100, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517261

RESUMO

We demonstrated an easy method to improve the efficiency of photocatalysts by an order of magnitude by maximizing light absorption and charge carrier diffusion. Degussa titania (P25) and Pd/P25 composite photocatalyst thin films coated over regular glass plates were prepared and evaluated for solar hydrogen production in direct sunlight with aqueous methanol. It is worth noting that only UV light present in direct sunlight (∼4%) was absorbed by the catalysts. The hydrogen production activities of catalysts were compared for thin film and particulate forms at 1 and 25 mg levels. The hydrogen yield values suggested that 1 mg thin film form of Pd/P25 provided 11-12 times higher activity than 25 mg powder form. Comparable light absorption throughout the entire thickness of photocatalyst device and better contact of nanostructures that enabled the charge diffusion and charge utilization at redox sites are the reasons for high efficiency. While solar cells require charge carriers to diffuse through long distances of microns, they are utilized locally in an ensemble of particles (of nanometres) for hydrogen generation in photocatalyst thin films; this concept was used effectively in the present work.

9.
Nanotechnology ; 27(6): 065603, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26762732

RESUMO

The shape control of Pd nanoparticles is investigated using chloride (Cl(-)) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl(-) ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl(-) ions from the nanoparticle surface is easier than that of Br(-) ions (moderately adsorbing and etching) and I(-) ions (strongly adsorbing and weakly etching). The cleaned Cl(-) ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

10.
Chem Commun (Camb) ; 50(66): 9365-8, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25005683

RESUMO

The inherent property of palladium to form hydride is effectively exploited for the removal of adsorbed stabilizer and capping agents. Formation of hydride on exposure of Pd nanoparticles to sodium-borohydride weakens the metal's interaction with the adsorbed-impurities and thus enables their easy removal without compromising the shape, size and dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...