Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 35490, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762284

RESUMO

The current paper describes enhanced electrochemical capacitive performance of chemically grown Cobalt hydroxide (Co(OH)2) nanorods (NRs) decorated porous three dimensional graphitic carbon foam (Co(OH)2/3D GCF) as a supercapacitor electrode. Freestanding 3D porous GCF is prepared by carbonizing, high internal phase emulsion (HIPE) polymerized styrene and divinylbenzene. The PolyHIPE was sulfonated and carbonized at temperature up to 850 °C to obtain graphitic 3D carbon foam with high surface area (389 m2 g-1) having open voids (14 µm) interconnected by windows (4 µm) in monolithic form. Moreover, entangled Co(OH)2 NRs are anchored on 3D GCF electrodes by using a facile chemical bath deposition (CBD) method. The wide porous structure with high specific surface area (520 m2 g-1) access offered by the interconnected 3D GCF along with Co(OH)2 NRs morphology, displays ultrahigh specific capacitance, specific energy and power. The Co(OH)2/3D GCF electrode exhibits maximum specific capacitance about ~1235 F g-1 at ~1 A g-1 charge-discharge current density, in 1 M aqueous KOH solution. These results endorse potential applicability of Co(OH)2/3D GCF electrode in supercapacitors and signifies that, the porous GCF is a proficient 3D freestanding framework for loading pseudocapacitive nanostructured materials.

2.
J Mater Chem B ; 4(3): 450-460, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263209

RESUMO

A series of novel superporous hydrogels for regenerative medicine were prepared by oil-in-water (o/w) or inverse high internal phase emulsion (i-HIPE) copolymerization of glycerol monomethacrylate (GMMA), 2-hydroxy ethyl methacrylate (HEMA) and glycerol dimethacrylate (GDMA) as a cross-linker using a non toxic solvent and a redox initiator system at the physiological temperature (37 °C). The monomer GMMA was synthesized from glycidyl methacrylate (GMA) by an alternative facile method using Amberlyst-15. The described i-HIPEs showed a significantly wider stability window. The polyHIPE hydrogels were characterized by FTIR, BET method for surface area, mercury porosimetry, SEM, DSC, TGA, XRD, compressive strain and strain recovery. The swelling ratio of the hydrogels and their degradation in 0.007 M NaOH and lipase B (Candida antarctica) solutions were determined gravimetrically and the rate of degradation was explained in terms of the molecular structure of the hydrogels. The morphological studies showed that the pore diameter varied between 20 and 30 µm and the pore throats (interconnecting windows) diameter was in the range of 4-8 µm. The described polyHIPE hydrogels were found to have an open cell morphology and interconnected pore architecture, which are important characteristics for scaffold applications. The initial cytotoxicity study performed according to ISO-10993-5 indicated cytocompatibility (97% cell viability) and the subsequent cell seeding and proliferation study exhibited 55-88% cell viability (increased monotonously from GHG-1 to GHG-5), which could be attributed to modulation of the physical and chemical properties of the hydrogels. The described super porous hydrogels are considered as potential candidates for scaffold materials in tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...