Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prev Vet Med ; 221: 106051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918209

RESUMO

Peste des petits ruminants (PPR) is a highly contagious and fatal disease of mostly domestic goats and sheep. First reported in Uganda in 2007, the extent of peste des petits ruminants virus (PPRV) exposure, geographical distribution and risk factors of its transmission and spread are not clearly understood. In this study, we used cluster random sampling methodology to select study villages from three districts representing three different production systems along Uganda's "cattle corridor". Between October and December 2022, 2520 goat and sheep serum samples were collected from 252 households with no history of PPR vaccination in the past one year. The household heads were interviewed to assess possible risk factors of PPRV transmission using a structured questionnaire. The serum samples were screened with a commercial competitive enzyme-linked immunosorbent assay (cELISA) for PPRV antibodies. The determined overall true seroprevalence of PPRV was 27.3% [95% CI: 25.4-29.1]. The seroprevalence of PPRV antibodies in different production systems was 44.1% [95% CI: 40.6-47.7], 31.7% [95% CI: 28.4-35.0] and 6.1% [95% CI: 4.4-7.9] for pastoral, agropastoral and mixed crop-livestock production systems respectively. A mixed-effects multivariable logistic regression model revealed strong statistical evidence of association between female animals and PPRV antibody seropositivity compared to males [OR= 2.45, 95% CI: 1.7-3.5, p < 0.001]. The likelihood of being PPRV antibody seropositive significantly increased with increasing small ruminant age. Animals older than 3 years were more than three times as likely to be PPRV seropositive compared to animals aged under 1 year [OR= 3.41, 95% CI: 2.39-4.85, p < 0.001]. There was no statistical evidence of association between small ruminant species and PPRV antibody seropositivity (p = 0.423). Village flocks that interacted with neighboring flocks daily during grazing (IRR = 1.59, 95% CI: 1.19-2.13) and watering around swamps (IRR = 1.59, 95% CI: 1.19-2.13) were highly correlated with increased number of PPRV seropositive animals as compared to flocks that were more restricted in grazing and watered around other water sources other than swamps. Flocks from pastoral and agropastoral production systems were more than 10 times more likely to have seropositive animals than mixed crop-livestock flocks. Targeting PPR control interventions (vaccination and livestock movement control) to pastoral and agro-pastoral small ruminant production systems that are very prone to PPR incursions is recommended to prevent PPRV spread to low-risk smallholder mixed crop-livestock production systems.


Assuntos
Doenças dos Bovinos , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Masculino , Feminino , Animais , Ovinos , Bovinos , Peste dos Pequenos Ruminantes/epidemiologia , Estudos Soroepidemiológicos , Uganda/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Fatores de Risco , Cabras , Anticorpos Antivirais , Gado
2.
Front Vet Sci ; 8: 621699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222391

RESUMO

While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife-livestock-human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.

3.
Vaccines (Basel) ; 9(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809269

RESUMO

Background-misinformation and mistrust often undermines community vaccine uptake, yet information in rural communities, especially of developing countries, is scarce. This study aimed to identify major challenges associated with coronavirus disease 2019 (COVID-19) vaccine clinical trials among healthcare workers and staff in Uganda. Methods-a rapid exploratory survey was conducted over 5 weeks among 260 respondents (66% male) from healthcare centers across the country using an online questionnaire. Twenty-seven questions assessed knowledge, confidence, and trust scores on COVID-19 vaccine clinical trials from participants in 46 districts in Uganda. Results-we found low levels of knowledge (i.e., confusing COVID-19 with Ebola) with males being more informed than females (OR = 1.5, 95% CI: 0.7-3.0), and mistrust associated with policy decisions to promote herbal treatments in Uganda and the rushed international clinical trials, highlighting challenges for the upcoming Oxford-AstraZeneca vaccinations. Knowledge, confidence and trust scores were higher among the least educated (certificate vs. bachelor degree holders). We also found a high level of skepticism and possible community resistance to DNA recombinant vaccines, such as the Oxford-AstraZeneca vaccine. Preference for herbal treatments (38/260; 14.6%, 95% CI: 10.7-19.3) currently being promoted by the Ugandan government raises major policy concerns. High fear and mistrust for COVID-19 vaccine clinical trials was more common among wealthier participants and more affluent regions of the country. Conclusion-our study found that knowledge, confidence, and trust in COVID-19 vaccines was low among healthcare workers in Uganda, especially those with higher wealth and educational status. There is a need to increase transparency and inclusive participation to address these issues before new trials of COVID-19 vaccines are initiated.

4.
Heliyon ; 7(1): e05688, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437885

RESUMO

BACKGROUND: Information as regards the epidemiology of the Anaplasmataceae in small ruminants in several low- and middle-income countries is scarce. METHODS: In this study a total of 712 DNA samples collected from small ruminants were analyzed for Anaplasmataceae and Anaplasma ovis using the 16S rRNA and MSP4 genes respectively. Infection risk was assessed by location, sex and age of the animals and qGIS® was used to construct spatial maps. RESULTS: The prevalence of Anaplasmataceae spp was 89.1% (95% CI: 77.5-95.9) and 79.1% (95% CI: 75.9-82.1) in ovines and caprines respectively (RR = 1.1, 95% CI: 1.0-1.3); higher than those previously reported in other eastern African countries. The prevalence of A. ovis was 26.1% and 25.4% for both ovines and caprines respectively with ovines showing significantly higher levels of infection than caprines (P < 0.05). The risk of Anaplasma ovis infections was not affected by age (OR = 1.2, 95% CI: 0.9-1.7) or sex (OR = 1.1, 95% CI: 0.6-2.0). Small ruminants located at the forest edge (<0.3 km) showed higher A. ovis prevalence than those found inland with infections present in the midland regions associated with increased agricultural activity. CONCLUSION: Anaplasma ovis remains a major challenge for small ruminant husbandry in Uganda and infections are under-reported. Policy efforts to prioritize management of Anaplasmataceae for small ruminant health would promote livestock productivity in vulnerable communities, improving livelihoods and ecosystem health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...