Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 12(3): 1674-1683, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284294

RESUMO

Background: When assessing the volume of pulmonary nodules on computed tomography (CT) images, there is an inevitable discrepancy between values based on the diameter-based volume calculation and the voxel-counting method, which is derived from the Euclidean distance measurement method on pixel/voxel-based digital image. We aimed to evaluate the ability of a modified diameter measurement method to reduce the discrepancy, and we determined a conversion equation to equate volumes derived from different methods. Methods: Two different anthropomorphic phantoms with subsolid and solid nodules were repeatedly scanned under various settings. Nodules in CT images were detected and segmented using a fully automated algorithm and the volume was calculated using three methods: the voxel-counting method (Vvc ), diameter-based volume calculation (Vd ), and a modified diameter-based volume calculation (Vd+ 1), in which one pixel spacing was added to the diameters in the three axes (x-, y-, and z-axis). For each nodule, Vd and Vd +1 were compared to Vvc by computing the absolute percentage error (APE) as follows: APE =100 × (V - Vvc )/Vvc . Comparisons between APEd and APEd+1 according to CT parameter setting were performed using the Wilcoxon signed-rank test. The Jonckheere-Terpstra test was used to evaluate trends across the four different nodule sizes. Results: The deep learning-based computer-aided diagnosis (DL-CAD) successfully detected and segmented all nodules in a fully automatic manner. The APE was significantly less with Vd+1 than with Vd (Wilcoxon signed-rank test, P<0.05) regardless of CT parameters and nodule size. The APE median increased as the size of the nodule decreased. This trend was statistically significant (Jonckheere-Terpstra test, P<0.001) regardless of volume measurement method (diameter-based and modified diameter-based volume calculations). Conclusions: Our modified diameter-based volume calculation significantly reduces the discrepancy between the diameter-based volume calculation and voxel-counting method.

2.
J Clin Med ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276433

RESUMO

We aimed to analyse the CT examinations of the previous screening round (CTprev) in NLST participants with incidence lung cancer and evaluate the value of DL-CAD in detection of missed lung cancers. Thoracic radiologists reviewed CTprev in participants with incidence lung cancer, and a DL-CAD analysed CTprev according to NLST criteria and the lung CT screening reporting & data system (Lung-RADS) classification. We calculated patient-wise and lesion-wise sensitivities of the DL-CAD in detection of missed lung cancers. As per the NLST criteria, 88% (100/113) of CTprev were positive and 74 of them had missed lung cancers. The DL-CAD reported 98% (98/100) of the positive screens as positive and detected 95% (70/74) of the missed lung cancers. As per the Lung-RADS classification, 82% (93/113) of CTprev were positive and 60 of them had missed lung cancers. The DL-CAD reported 97% (90/93) of the positive screens as positive and detected 98% (59/60) of the missed lung cancers. The DL-CAD made false positive calls in 10.3% (27/263) of controls, with 0.16 false positive nodules per scan (41/263). In conclusion, the majority of CTprev in participants with incidence lung cancers had missed lung cancers, and the DL-CAD detected them with high sensitivity and a limited false positive rate.

3.
AJR Am J Roentgenol ; 213(1): 155-162, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30917021

RESUMO

OBJECTIVE. The objective of our study was to compare the sensitivity of a deep learning (DL) algorithm with the assessments by radiologists in diagnosing osteonecrosis of the femoral head (ONFH) using digital radiography. MATERIALS AND METHODS. We performed a two-center, retrospective, noninferiority study of consecutive patients (≥ 16 years old) with a diagnosis of ONFH based on MR images. We investigated the following four datasets of unilaterally cropped hip anteroposterior radiographs: training (n = 1346), internal validation (n = 148), temporal external test (n = 148), and geographic external test (n = 250). Diagnostic performance was measured for a DL algorithm, a less experienced radiologist, and an experienced radiologist. Noninferiority analyses for sensitivity were performed for the DL algorithm and both radiologists. Subgroup analysis for precollapse and postcollapse ONFH was done. RESULTS. Overall, 1892 hips (1037 diseased and 855 normal) were included. Sensitivity and specificity for the temporal external test set were 84.8% and 91.3% for the DL algorithm, 77.6% and 100.0% for the less experienced radiologist, and 82.4% and 100.0% for the experienced radiologist. Sensitivity and specificity for the geographic external test set were 75.2% and 97.2% for the DL algorithm, 77.6% and 75.0% for the less experienced radiologist, and 78.0% and 86.1% for the experienced radiologist. The sensitivity of the DL algorithm was noninferior to that of the assessments by both radiologists. The DL algorithm was more sensitive for precollapse ONFH than the assessment by the less experienced radiologist in the temporal external test set (75.9% vs 57.4%; 95% CI of the difference, 4.5-32.8%). CONCLUSION. The sensitivity of the DL algorithm for diagnosing ONFH using digital radiography was noninferior to that of both less experienced and experienced radiologist assessments.

4.
Invest Radiol ; 54(1): 7-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067607

RESUMO

OBJECTIVES: The aim of this study was to compare the diagnostic performance of a deep learning algorithm with that of radiologists in diagnosing maxillary sinusitis on Waters' view radiographs. MATERIALS AND METHODS: Among 80,475 Waters' view radiographs, examined between May 2003 and February 2017, 9000 randomly selected cases were classified as normal or maxillary sinusitis based on radiographic findings and divided into training (n = 8000) and validation (n = 1000) sets to develop a deep learning algorithm. Two test sets composed of Waters' view radiographs with concurrent paranasal sinus computed tomography were labeled based on computed tomography findings: one with temporal separation (n = 140) and the other with geographic separation (n = 200) from the training set. Area under the receiver operating characteristics curve (AUC), sensitivity, and specificity of the algorithm and 5 radiologists were assessed. Interobserver agreement between the algorithm and majority decision of the radiologists was measured. The correlation coefficient between the predicted probability of the algorithm and average confidence level of the radiologists was determined. RESULTS: The AUCs of the deep learning algorithm were 0.93 and 0.88 for the temporal and geographic external test sets, respectively. The AUCs of the radiologists were 0.83 to 0.89 for the temporal and 0.75 to 0.84 for the geographic external test sets. The deep learning algorithm showed statistically significantly higher AUC than radiologist in both test sets. In terms of sensitivity and specificity, the deep learning algorithm was comparable to the radiologists. A strong interobserver agreement was noted between the algorithm and radiologists (Cohen κ coefficient, 0.82). The correlation coefficient between the predicted probability of the algorithm and confidence level of radiologists was 0.89 and 0.84 for the 2 test sets, respectively. CONCLUSIONS: The deep learning algorithm could diagnose maxillary sinusitis on Waters' view radiograph with superior AUC and comparable sensitivity and specificity to those of radiologists.


Assuntos
Aprendizado Profundo , Sinusite Maxilar/diagnóstico por imagem , Radiografia/métodos , Área Sob a Curva , Feminino , Humanos , Masculino , Seio Maxilar/diagnóstico por imagem , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
5.
BMC Med Imaging ; 18(1): 53, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558555

RESUMO

BACKGROUND: To develop an algorithm to predict the visually lossless thresholds (VLTs) of CT images solely using the original images by exploiting the image features and DICOM header information for JPEG2000 compression and to evaluate the algorithm in comparison with pre-existing image fidelity metrics. METHODS: Five radiologists independently determined the VLT for 206 body CT images for JPEG2000 compression using QUEST procedure. The images were divided into training (n = 103) and testing (n = 103) sets. Using the training set, a multiple linear regression (MLR) model was constructed regarding the image features and DICOM header information as independent variables and regarding the VLTs determined with median value of the radiologists' responses (VLTrad) as dependent variable, after determining an optimal subset of independent variables by backward stepwise selection in a cross-validation scheme. The performance was evaluated on the testing set by measuring absolute differences and intra-class correlation (ICC) coefficient between the VLTrad and the VLTs predicted by the model (VLTmodel). The performance of the model was also compared two metrics, peak signal-to-noise ratio (PSNR) and high-dynamic range visual difference predictor (HDRVDP). The time for computing VLTs between MLR model, PSNR, and HDRVDP were compared using the repeated ANOVA with a post-hoc analysis. P < 0.05 was considered to indicate a statistically significant difference. RESULTS: The means of absolute differences with the VLTrad were 0.58 (95% CI, 0.48, 0.67), 0.73 (0.61, 0.85), and 0.68 (0.58, 0.79), for the MLR model, PSNR, and HDRVDP, respectively, showing significant difference between them (p < 0.01). The ICC coefficients of MLR model, PSNR, and HDRVDP were 0.88 (95% CI, 0.81, 0.95), 0.85 (0.79, 0.91), and 0.84 (0.77, 0.91). The computing times for calculating VLT per image were 1.5 ± 0.1 s, 3.9 ± 0.3 s, and 68.2 ± 1.4 s, for MLR metric, PSNR, and HDRVDP, respectively. CONCLUSIONS: The proposed MLR model directly predicting the VLT of a given CT image showed competitive performance to those of image fidelity metrics with less computational expenses. The model would be promising to be used for adaptive compression of CT images.


Assuntos
Algoritmos , Compressão de Dados/métodos , Tomografia Computadorizada por Raios X , Adulto , Humanos , Modelos Lineares , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Abdominal/métodos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...