Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJR Am J Roentgenol ; 222(1): e2329769, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703195

RESUMO

BACKGROUND. Timely and accurate interpretation of chest radiographs obtained to evaluate endotracheal tube (ETT) position is important for facilitating prompt adjustment if needed. OBJECTIVE. The purpose of our study was to evaluate the performance of a deep learning (DL)-based artificial intelligence (AI) system for detecting ETT presence and position on chest radiographs in three patient samples from two different institutions. METHODS. This retrospective study included 539 chest radiographs obtained immediately after ETT insertion from January 1 to March 31, 2020, in 505 patients (293 men, 212 women; mean age, 63 years) from institution A (sample A); 637 chest radiographs obtained from January 1 to January 3, 2020, in 302 patients (157 men, 145 women; mean age, 66 years) in the ICU (with or without an ETT) from institution A (sample B); and 546 chest radiographs obtained from January 1 to January 20, 2020, in 83 patients (54 men, 29 women; mean age, 70 years) in the ICU (with or without an ETT) from institution B (sample C). A commercial DL-based AI system was used to identify ETT presence and measure ETT tip-to-carina distance (TCD). The reference standard for proper ETT position was TCD between greater than 3 cm and less than 7 cm, determined by human readers. Critical ETT position was separately defined as ETT tip below the carina or TCD of 1 cm or less. ROC analysis was performed. RESULTS. AI had sensitivity and specificity for identification of ETT presence of 100.0% and 98.7% (sample B) and 99.2% and 94.5% (sample C). AI had sensitivity and specificity for identification of improper ETT position of 72.5% and 92.0% (sample A), 78.9% and 100.0% (sample B), and 83.7% and 99.1% (sample C). At a threshold y-axis TCD of 2 cm or less, AI had sensitivity and specificity for critical ETT position of 100.0% and 96.7% (sample A), 100.0% and 100.0% (sample B), and 100.0% and 99.2% (sample C). CONCLUSION. AI identified improperly positioned ETTs on chest radiographs obtained after ETT insertion as well as on chest radiographs obtained of patients in the ICU at two institutions. CLINICAL IMPACT. Automated AI identification of improper ETT position on chest radiographs may allow earlier repositioning and thereby reduce complications.


Assuntos
Inteligência Artificial , Intubação Intratraqueal , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Intubação Intratraqueal/métodos , Traqueia , Radiografia
2.
Radiology ; 307(5): e222976, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367443

RESUMO

Background The factors affecting radiologists' diagnostic determinations in artificial intelligence (AI)-assisted image reading remain underexplored. Purpose To assess how AI diagnostic performance and reader characteristics influence detection of malignant lung nodules during AI-assisted reading of chest radiographs. Materials and Methods This retrospective study consisted of two reading sessions from April 2021 to June 2021. Based on the first session without AI assistance, 30 readers were assigned into two groups with equivalent areas under the free-response receiver operating characteristic curve (AUFROCs). In the second session, each group reinterpreted radiographs assisted by either a high or low accuracy AI model (blinded to the fact that two different AI models were used). Reader performance for detecting lung cancer and reader susceptibility (changing the original reading following the AI suggestion) were compared. A generalized linear mixed model was used to identify the factors influencing AI-assisted detection performance, including readers' attitudes and experiences of AI and Grit score. Results Of the 120 chest radiographs assessed, 60 were obtained in patients with lung cancer (mean age, 67 years ± 12 [SD]; 32 male; 63 cancers) and 60 in controls (mean age, 67 years ± 12; 36 male). Readers included 20 thoracic radiologists (5-18 years of experience) and 10 radiology residents (2-3 years of experience). Use of the high accuracy AI model improved readers' detection performance to a greater extent than use of the low accuracy AI model (area under the receiver operating characteristic curve, 0.77 to 0.82 vs 0.75 to 0.75; AUFROC, 0.71 to 0.79 vs 0.7 to 0.72). Readers who used the high accuracy AI showed a higher susceptibility (67%, 224 of 334 cases) to changing their diagnosis based on the AI suggestions than those using the low accuracy AI (59%, 229 of 386 cases). Accurate readings at the first session, correct AI suggestions, high accuracy Al, and diagnostic difficulty were associated with accurate AI-assisted readings, but readers' characteristics were not. Conclusion An AI model with high diagnostic accuracy led to improved performance of radiologists in detecting lung cancer on chest radiographs and increased radiologists' susceptibility to AI suggestions. © RSNA, 2023 Supplemental material is available for this article.


Assuntos
Neoplasias Pulmonares , Lesões Pré-Cancerosas , Humanos , Masculino , Idoso , Estudos Retrospectivos , Inteligência Artificial , Radiografia , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão , Radiografia Torácica/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...