Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 69(9): 2133-2145, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33956370

RESUMO

Our recent finding has demonstrated that astrocytes confer neuroprotection by endogenously producing ciliary neurotrophic factor (CNTF) via transient receptor potential vanilloid 1 (TRPV1) in Parkinson's disease (PD). In this study, the possible molecular target for TRPV1-mediated CNTF production and its neuroprotective effects on dopamine neurons were further investigated. For comparison, glial cell-line derived neurotrophic factor (GDNF) was also examined. The results show that TRPV1-ribosomal protein 70 S6 kinase (p70S6K) signaling on astrocytes produces endogenous CNTF in the SN of MPP+ -lesioned rat. By marked contrast, the expression of GDNF on astrocytes is independent of TRPV1-p70S6K signaling. Administration of a TRPV1 agonist, capsaicin, increases levels of phosphorylated p70S6K (p-p70S6K; activation of p70S6K) on astrocytes, resulting in the survival of dopamine neurons and behavioral recovery through endogenous production of CNTF in the MPP+ -lesioned rat model of PD. Immunohistochemical analysis reveals expression of p-p70S6K on astrocytes in the SN of PD patients, indicating relevance to human PD. The present in vivo data is the first to demonstrate that astrocytic TRPV1-p70S6K signaling plays a pivotal role as endogenous neuroprotective, and it may constitute a novel therapeutic target for treating PD.


Assuntos
Neurônios Dopaminérgicos , Fármacos Neuroprotetores , 1-Metil-4-fenilpiridínio/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Fármacos Neuroprotetores/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Substância Negra/metabolismo
2.
Free Radic Biol Med ; 160: 575-595, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32896600

RESUMO

Regulating amyloid beta (Aß) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aß plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function. In addition, KVN93 significantly reduced Aß plaque levels in 5x FAD mice by regulating levels of the Aß degradation enzymes neprilysin (NEP) and insulin-degrading enzyme (IDE). Moreover, Aß-induced microglial and astrocyte activation were significantly suppressed in the KVN-treated 5xFAD mice. KVN93 altered neuroinflammation induced by LPS in microglial cells but not primary astrocytes by regulating TLR4/AKT/STAT3 signaling, and in wild-type mice injected with LPS, KVN93 treatment reduced microglial and astrocyte activation. Overall, these results suggest that the novel DYRK1A inhibitor KVN93 is a potential therapeutic drug for regulating cognitive/synaptic function, Aß plaque load, and neuroinflammatory responses in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Cognição , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia , Placa Amiloide/tratamento farmacológico , Quinases Dyrk
3.
Exp Neurobiol ; 28(2): 289-299, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31138996

RESUMO

Transient receptor potential vanilloid subtype 1 (TRPV1) on astrocytes prevents ongoing degeneration of nigrostriatal dopamine (DA) neurons in MPP+-lesioned rats via ciliary neurotrophic factor (CNTF). The present study determined whether such a beneficial effect of astrocytic TRPV1 could be achieved after completion of injury of DA neurons, rather than ongoing injury, which seems more relevant to therapeutics. To test this, the MPP+-lesioned rat model utilized here exhibited approximately 70~80% degeneration of nigrostriatal DA neurons that was completed at 2 weeks post medial forebrain bundle injection of MPP+. TRPV1 agonist, capsaicin (CAP), was intraperitoneally administered. CNTF receptor alpha neutralizing antibody (CNTFRαNAb) was nigral injected to evaluate the role of CNTF endogenously produced by astrocyte through TRPV1 activation on DA neurons. Delayed treatment of CAP produced a significant reduction in amphetamine-induced rotational asymmetry. Accompanying this behavioral recovery, CAP treatment increased CNTF levels and tyrosine hydroxylase (TH) activity in the substantia nigra pars compacta (SNpc), and levels of DA and its metabolites in the striatum compared to controls. Interestingly, behavioral recovery and increases in biochemical indices were not reflected in trophic changes of the DA system. Instead, behavioral recovery was temporal and dependent on the continuous presence of CAP treatment. The results suggest that delayed treatment of CAP increases nigral TH enzyme activity and striatal levels of DA and its metabolites by CNTF endogenously derived from CAP-activated astrocytes through TRPV1, leading to functional recovery. Consequently, these findings may be useful in the treatment of DA imbalances associated with Parkinson's disease.

4.
Int J Mol Sci ; 19(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423807

RESUMO

We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP⁺-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP⁺-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP⁺-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson's disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Fator Neurotrófico Ciliar/farmacologia , Neurônios Dopaminérgicos/patologia , Microglia/patologia , Neuroproteção/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Estresse Oxidativo , Idoso , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator Neutrófico Ciliar/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Canais de Cátion TRPV/metabolismo
5.
J Neuroinflammation ; 15(1): 286, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309372

RESUMO

BACKGROUND: Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's disease (AD). Thus, modulating the neuroinflammatory response represents a potential therapeutic strategy for treating neurodegenerative diseases. Several recent studies have shown that dopamine (DA) and its receptors are expressed in immune cells and are involved in the neuroinflammatory response. Thus, we recently developed and synthesized a non-self-polymerizing analog of DA (CA140) and examined the effect of CA140 on neuroinflammation. METHODS: To determine the effects of CA140 on the neuroinflammatory response, BV2 microglial cells were pretreated with lipopolysaccharide (LPS, 1 µg/mL), followed by treatment with CA140 (10 µM) and analysis by reverse transcription-polymerase chain reaction (RT-PCR). To examine whether CA140 alters the neuroinflammatory response in vivo, wild-type mice were injected with both LPS (10 mg/kg, intraperitoneally (i.p.)) and CA140 (30 mg/kg, i.p.), and immunohistochemistry was performed. In addition, familial AD (5xFAD) mice were injected with CA140 or vehicle daily for 2 weeks and examined for microglial and astrocyte activation. RESULTS: Pre- or post-treatment with CA140 differentially regulated proinflammatory responses in LPS-stimulated microglia and astrocytes. Interestingly, CA140 regulated D1R levels to alter LPS-induced proinflammatory responses. CA140 significantly downregulated LPS-induced phosphorylation of ERK and STAT3 in BV2 microglia cells. In addition, CA140-injected wild-type mice exhibited significantly decreased LPS-induced microglial and astrocyte activation. Moreover, CA140-injected 5xFAD mice exhibited significantly reduced microglial and astrocyte activation. CONCLUSIONS: CA140 may be beneficial for preventing and treating neuroinflammatory-related diseases, including AD.


Assuntos
Doença de Alzheimer/complicações , Anti-Inflamatórios/uso terapêutico , Dopamina/análogos & derivados , Encefalite/tratamento farmacológico , Encefalite/etiologia , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Polissacarídeos/farmacologia , Presenilina-1/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Front Aging Neurosci ; 10: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319390

RESUMO

Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1ß mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1ß levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 µg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).

7.
J Neuroinflammation ; 15(1): 271, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231870

RESUMO

BACKGROUND: The FDA-approved small-molecule drug ibrutinib is an effective targeted therapy for patients with chronic lymphocytic leukemia (CLL). Ibrutinib inhibits Bruton's tyrosine kinase (BTK), a kinase involved in B cell receptor signaling. However, the potential regulation of neuroinflammatory responses in the brain by ibrutinib has not been comprehensively examined. METHODS: BV2 microglial cells were treated with ibrutinib (1 µM) or vehicle (1% DMSO), followed by lipopolysaccharide (LPS; 1 µg/ml) or PBS. RT-PCR, immunocytochemistry, and subcellular fractionation were performed to examine the effects of ibrutinib on neuroinflammatory responses. In addition, wild-type mice were sequentially injected with ibrutinib (10 mg/kg, i.p.) or vehicle (10% DMSO, i.p.), followed by LPS (10 mg/kg, i.p.) or PBS, and microglial and astrocyte activations were assessed using immunohistochemistry. RESULTS: Ibrutinib significantly reduced LPS-induced increases in proinflammatory cytokine levels in BV2 microglial and primary microglial cells but not in primary astrocytes. Ibrutinib regulated TLR4 signaling to alter LPS-induced proinflammatory cytokine levels. In addition, ibrutinib significantly decreased LPS-induced increases in p-AKT and p-STAT3 levels, suggesting that ibrutinib attenuates LPS-induced neuroinflammatory responses by inhibiting AKT/STAT3 signaling pathways. Interestingly, ibrutinib also reduced LPS-induced BV2 microglial cell migration by inhibiting AKT signaling. Moreover, ibrutinib-injected wild-type mice exhibited significantly reduced microglial/astrocyte activation and COX-2 and IL-1ß proinflammatory cytokine levels. CONCLUSIONS: Our data provide insights on the mechanisms of a potential therapeutic strategy for neuroinflammation-related diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Compostos Heterocíclicos com 3 Anéis/farmacologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/química , Pirimidinas/química , Ratos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
8.
J Cell Biochem ; 119(1): 300-313, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569433

RESUMO

Human glioblastomas express higher levels of matrix metalloprotease-2 (MMP-2) than low-grade brain tumors and normal brain tissues. Ascochlorin (ASC) has anti-metastatic, anti-angiogenic, and synergistic effect in various types of cancer cells. However, it remains unknown whether ASC can affect cell migration and invasion in malignant human glioma cells. In this study, we found that ASC indeed inhibits cell migration and invasion in U373MG and A172. ASC significantly suppresses the MMP-2 gelatinolytic activity and expression in U373MG and A172. To determine the molecular mechanism by which ASC suppressed cell migration and invasion, we investigated whether ASC could modulate metastasis via focal adhesion kinase (FAK) and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, a potential drug target. ASC strongly inhibits the phosphorylation of FAK, and treatment with a FAK inhibitor significantly suppresses cancer cell migration in the presence of ASC. In addition, ASC significantly decreased phosphorylation of JAK2/STAT3, cancer cell migration and nuclear translocation of STAT3. Taken together, these results suggest that ASC inhibits cell migration and invasion by blocking FAK and JAK/STAT signaling, resulting in reduced MMP-2 activity. J. Cell. Biochem. 119: 300-313, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Alcenos/farmacologia , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Glioblastoma/tratamento farmacológico , Janus Quinase 2/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Fenóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica
9.
Oncol Rep ; 38(6): 3619-3631, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29130110

RESUMO

Previously, we showed that the herbal extract EYK (Epimedium koreanum Nakai) can regulate the immune response. Other studies showed that EYK has beneficial effects in human lung cancer, angiogenesis and Alzheimer's disease (AD). However, it remains unknown whether EYK can affect cancer cell migration and invasion in human brain cancer cell lines. In the present study, we found that pre- or post-treatment with EYK inhibited phorbol 12-myristate 13-acetate (PMA)-induced cancer cell migration and invasion in A172 cells, but not in U373MG or T98G cells. Additionally, pre- or post-treatment with PMA followed by EYK decreased MMP-9 activity in A172 cells. Moreover, treatment with a NF-κB inhibitor significantly decreased cell migration in A172 cells pre- or post-treated with EYK and PMA, suggesting that EYK requires NF-κB to alter cancer cell migration. Either pre- or post-treatment with EYK significantly decreased NF-κB nuclear translocation in comparison with PMA treatment. Taken together, our results suggest that EYK suppresses PMA-induced cancer cell migration in monomorphic malignant human glioma cells by downregulating the NF-κB pathway and decreasing MMP-9 activity.


Assuntos
Neoplasias Encefálicas/metabolismo , Epimedium/química , Glioma/metabolismo , Ésteres de Forbol/efeitos adversos , Extratos Vegetais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos
10.
J Cell Biochem ; 118(12): 4672-4685, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498494

RESUMO

Histone deacetylase inhibitors (HDACIs) have emerged as potential anticancer agents for the treatment of solid and hematopoietic cancers. Several HDACIs delay cell growth, induce differentiation, or activate apoptosis in multiple types of tumors, including glioblastomas. In the present study, we showed that the mercaptoacetamide-based HDACI W2 inhibits cell migration and invasion in monomorphic malignant human glioma cells. W2 treatment significantly decreased the activity and expression levels of matrix metalloprotease-2 in malignant A172 cells but not in U373MG cells. Key signaling pathways involved in cell migration and invasion, including PI3K-AKT, ERK-JNK-P38, and FAK/STAT3, were examined to identify the mechanism of action of W2. W2 increased the phosphorylation of AKT and altered cell migration and invasion in an AKT-independent manner. W2 inhibited the phosphorylation of FAK/STAT3, and treatment with a FAK/STAT3 inhibitor significantly suppressed cancer cell migration and MMP-2 activity in the presence of W2. In addition, W2 significantly inhibited the nuclear translocation of phospho-STAT3. Taken together, our results suggest that W2 suppresses cancer cell migration and invasion by inhibiting FAK/STAT3 signaling and STAT3 translocation to the nucleus in monomorphic malignant human glioma cells. J. Cell. Biochem. 118: 4672-4685, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Tioacetamida/análogos & derivados , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Fator de Transcrição STAT3/genética , Tioacetamida/farmacologia
11.
J Alzheimers Dis ; 51(2): 591-604, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890742

RESUMO

BACKGROUND: The accumulation of amyloid-ß (Aß) leads to the loss of dendritic spines and synapses, which is hypothesized to cause cognitive impairments in Alzheimer's disease (AD) patients. In our previous study, we demonstrated that a novel mercaptoacetamide-based class II histone deacetylase inhibitor (HDACI), known as W2, decreased Aß levels and improved learning and memory in mice. However, the underlying mechanism of this effect is unknown. OBJECTIVE: Because dendritic spine formation is associated with cognitive performance, here we investigated whether HDACI W2 regulates dendritic spine density and its molecular mechanism of action. METHODS: To examine the effect of HDACI W2 on dendritic spine density, we conducted morphological analysis of dendritic spines using GFP transfection and Golgi staining. In addition, to determine the molecular mechanism of W2 effects on spines, we measured the levels of mRNAs and proteins involved in the Ras signaling pathway using quantitative real-time PCR, immunocytochemistry, and western analysis. RESULTS: We found that HDACI W2 altered dendritic spine density and morphology in vitro and in vivo. Additionally, W2 increased the mRNA or protein levels of Ras GRF1 and phospho-ERK. Moreover, knockdown of RasGRF1 and inhibition of ERK activity prevented the W2-mediated spinogenesis in primary hippocampal neurons. CONCLUSION: Our Class II-selective HDACI W2 promotes the formation and growth of dendritic spines in a RasGRF1 and ERK dependent manner in primary hippocampal neurons.


Assuntos
Acetamidas/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Tioglicolatos/farmacologia , ras-GRF1/metabolismo , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Espinhas Dendríticas/enzimologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transfecção , ras-GRF1/genética
12.
PLoS One ; 10(3): e0121803, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799580

RESUMO

Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Neurônios Dopaminérgicos/citologia , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Transdução de Sinais/genética , Transdução Genética , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Neuroproteção/efeitos dos fármacos , Neuroproteção/genética , Parte Compacta da Substância Negra/citologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Transdução de Sinais/efeitos dos fármacos
13.
Mol Ther ; 23(3): 445-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502903

RESUMO

Recent evidence has shown that Ras homolog enriched in brain (Rheb) is dysregulated in Alzheimer's disease (AD) brains. However, it is still unclear whether Rheb activation contributes to the survival and protection of hippocampal neurons in the adult brain. To assess the effects of active Rheb in hippocampal neurons in vivo, we transfected neurons in the cornu ammonis 1 (CA1) region in normal adult rats with an adeno-associated virus containing the constitutively active human Rheb (hRheb(S16H)) and evaluated the effects on thrombin-induced neurotoxicity. Transduction with hRheb(S16H) significantly induced neurotrophic effects in hippocampal neurons through activation of mammalian target of rapamycin complex 1 (mTORC1) without side effects such as long-term potentiation impairment and seizures from the alteration of cytoarchitecture, and the expression of hRheb(S16H) prevented thrombin-induced neurodegeneration in vivo, an effect that was diminished by treatment with specific neutralizing antibodies against brain-derived neurotrophic factor (BDNF). In addition, our results showed that the basal mTORC1 activity might be insufficient to mediate the level of BDNF expression, but hRheb(S16H)-activated mTORC1 stimulated BDNF production in hippocampal neurons. These results suggest that viral vector transduction with hRheb(S16H) may have therapeutic value in the treatment of neurodegenerative diseases such as AD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Região CA1 Hipocampal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Transdução Genética/métodos , Animais , Anticorpos Neutralizantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/agonistas , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Dependovirus/genética , Dependovirus/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Trombina/antagonistas & inibidores , Trombina/toxicidade
14.
Mol Neurobiol ; 51(2): 487-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24859383

RESUMO

The transduction of dopaminergic (DA) neurons with human ras homolog enriched in brain, which has a S16H mutation [hRheb(S16H)] protects the nigrostriatal DA projection in the 6-hydroxydopamine (6-OHDA)-treated animal model of Parkinson's disease (PD). However, it is still unclear whether the expression of active hRheb induces the production of neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), which are involved in neuroprotection, in mature neurons. Here, we show that transduction of nigral DA neurons with hRheb(S16H) significantly increases the levels of phospho-cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB), GDNF, and BDNF in neurons, which are attenuated by rapamycin, a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1). Moreover, treatment with specific neutralizing antibodies for GDNF and BDNF reduced the protective effects of hRheb(S16H) against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity. These results show that activation of hRheb/mTORC1 signaling pathway could impart to DA neurons the important ability to continuously produce GDNF and BDNF as therapeutic agents against PD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Proteínas Monoméricas de Ligação ao GTP/farmacologia , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Doença de Parkinson/metabolismo , Animais , Humanos , Proteínas Monoméricas de Ligação ao GTP/uso terapêutico , Neurônios/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/prevenção & controle , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
15.
PLoS One ; 9(6): e99654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959670

RESUMO

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.


Assuntos
Encéfalo/enzimologia , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Medição da Troca de Deutério , Modelos Animais de Doenças , Estabilidade Enzimática , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Ubiquitina Tiolesterase/química
16.
J Nutr Biochem ; 25(7): 801-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24797334

RESUMO

This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP(+) rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP(+) rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP(+)-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain.


Assuntos
Dopamina/fisiologia , Flavanonas/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/fisiopatologia , Substância Negra/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/imunologia , Ratos Sprague-Dawley
17.
Neuroreport ; 25(7): 489-95, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24488033

RESUMO

Prothrombin kringle-2 (pKr-2), a domain of prothrombin, can cause the degeneration of mesencephalic dopaminergic neurons through microglial activation. However, the chemical products that inhibit pKr-2-induced inflammatory activities in the brain are still not well known. The present study investigated whether minocycline, a semisynthetic tetracycline derivative, could inhibit pKr-2-induced microglial activation and prevent the loss of nigral dopaminergic (DA) neurons in vivo. To address this question, rats were administered a unilateral injection of pKr-2 in the substantia nigra in the presence or absence of minocycline. Our results show that pKr-2 induces the production of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inducible nitric oxide synthase from the activated microglia. In parallel, 7 days after pKr-2 injection, tyrosine hydroxylase immunocytochemical analysis and western blot analysis showed a significant loss of nigral DA neurons. This neurotoxicity was antagonized by minocycline and the observed neuroprotective effects were associated with the ability of minocycline to suppress the expression of tumor necrosis factor-α, interleukin-1ß, and nitric oxide synthase. These results suggest that minocycline may be promising as a potential therapeutic agent for the prevention of DA neuronal degeneration associated with pKr-2-induced microglial activation.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Encefalite , Minociclina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Protrombina/toxicidade , Substância Negra/patologia , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Encefalite/patologia , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Kringles , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Protrombina/química , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
BMB Rep ; 43(4): 225-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20423606

RESUMO

Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.


Assuntos
Encefalite/complicações , Mediadores da Inflamação/fisiologia , Doença de Parkinson/imunologia , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/fisiopatologia , Modelos Animais de Doenças , Encefalite/imunologia , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...