Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(43): e2204904, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952355

RESUMO

Over the last few decades, the research on ferroelectric memories has been limited due to their dimensional scalability and incompatibility with complementary metal-oxide-semiconductor (CMOS) technology. The discovery of ferroelectricity in fluorite-structured oxides revived interest in the research on ferroelectric memories, by inducing nanoscale nonvolatility in state-of-the-art gate insulators by minute doping and thermal treatment. The potential of this approach has been demonstrated by the fabrication of sub-30 nm electronic devices. Nonetheless, to realize practical applications, various technical limitations, such as insufficient reliability including endurance, retention, and imprint, as well as large device-to-device-variation, require urgent solutions. Furthermore, such limitations should be considered based on targeting devices as well as applications. Various types of ferroelectric memories including ferroelectric random-access-memory, ferroelectric field-effect-transistor, and ferroelectric tunnel junction should be considered for classical nonvolatile memories as well as emerging neuromorphic computing and processing-in-memory. Therefore, from the viewpoint of materials science, this review covers the recent research focusing on ferroelectric memories from the history of conventional approaches to future prospects.

2.
Nano Lett ; 14(9): 5029-34, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25084551

RESUMO

We report a surface-dominant Josephson effect in superconductor-topological insulator-superconductor (S-TI-S) devices, where a Bi1.5Sb0.5Te1.7Se1.3 (BSTS) crystal flake was adopted as an intervening TI between Al superconducting electrodes. We observed a Fraunhofer-type critical current modulation in a perpendicular magnetic field in an Al-TI-Al junction for both local and nonlocal current biasing. Fraunhofer-type modulation of the differential resistance was also observed in a neighboring Au-TI-Au normal junction when it was nonlocally biased by the Al-TI-Al junction. In all cases, the Fraunhofer-like signal was highly robust to the magnetic field up to the critical field of the Al electrodes, corresponding to the edge-stepped nonuniform supercurrent density arising from the top and rough side surfaces of the BSTS flake, which strongly suggests that the Josephson coupling in a TI is established through the surface conducting channels that are topologically protected.

3.
Phys Rev Lett ; 110(22): 226801, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767741

RESUMO

We report measurements of heat transport along the edge conducting channels in monolayer graphene in the integer quantum Hall regime. Hot charge carriers are injected to the edge channels, and the thermoelectric voltage is measured at a distance along the edge from the heat injection point. We confirm that heat transport in graphene in the quantum Hall regime is chiral and the thermoelectric signal is correlated with the charge conductance of ballistic transport, following the Mott relation. The thermoelectric signal decays with distance from the heater, indicating that carriers are partially thermalized during edge transmission.

4.
Phys Rev Lett ; 110(9): 096602, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496735

RESUMO

Coherent motion of electrons in Bloch states is one of the fundamental concepts of charge conduction in solid-state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by, e.g., a large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.

5.
Nanotechnology ; 22(41): 415203, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21914932

RESUMO

We fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously. Furthermore, in our scheme, we demonstrated independent control of the carrier density in the local-gate region, with a conductance map very much distinct from those of top-gated devices. This was caused by the electric field arising from the global back gate being strongly screened by the embedded local gate. Our scheme allows the realization of ideal multipolar graphene junctions with ballistic carrier transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...