Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(45): e2105017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553426

RESUMO

The complete hardware implementation of an optoelectronic neuromorphic computing system is considered as one of the most promising solutions to realize energy-efficient artificial intelligence. Here, a fully light-driven and scalable optoelectronic neuromorphic circuit with metal-chalcogenide/metal-oxide heterostructure phototransistor and photovoltaic divider is proposed. To achieve wavelength-selective neural operation and hardware-based pattern recognition, multispectral light modulated bidirectional synaptic circuits are utilized as an individual pixel for highly accurate and large-area neuromorphic computing system. The wavelength selective control of photo-generated charges at the heterostructure interface enables the bidirectional synaptic modulation behaviors including the excitatory and inhibitory modulations. More importantly, a 7 × 7 neuromorphic pixel circuit array is demonstrated to show the viability of implementing highly accurate hardware-based pattern training. In both the pixel training and pattern recognition simulation, the neuromorphic circuit array with the bidirectional synaptic modulation exhibits lower training errors and higher recognition rates, respectively.


Assuntos
Inteligência Artificial , Luz , Transistores Eletrônicos , Compostos de Cádmio/química , Eletricidade , Gálio/química , Índio/química , Porosidade , Sulfetos/química , Óxido de Zinco/química
2.
Materials (Basel) ; 14(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204507

RESUMO

Semiconducting single-walled carbon nanotubes (s-SWCNTs) have gathered significant interest in various emerging electronics due to their outstanding electrical and mechanical properties. Although large-area and low-cost fabrication of s-SWCNT field effect transistors (FETs) can be easily achieved via solution processing, the electrical performance of the solution-based s-SWCNT FETs is often limited by the charge transport in the s-SWCNT networks and interface between the s-SWCNT and the dielectrics depending on both s-SWCNT solution synthesis and device architecture. Here, we investigate the surface and interfacial electro-chemical behaviors of s-SWCNTs. In addition, we propose a cost-effective and straightforward process capable of minimizing polymers bound to s-SWCNT surfaces acting as an interfering element for the charge carrier transport via a heat-assisted purification (HAP). With the HAP treated s-SWCNTs, we introduced conformal dielectric configuration for s-SWCNT FETs, which are explored by a carefully designed wide array of electrical and chemical characterizations with finite-element analysis (FEA) computer simulation. For more favorable gate-field-induced surface and interfacial behaviors of s-SWCNT, we implemented conformally gated highly capacitive s-SWCNT FETs with ion-gel dielectrics, demonstrating field-effect mobility of ~8.19 cm2/V⋅s and on/off current ratio of ~105 along with negligible hysteresis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...